Understanding the Chemical Stability of Polymers for Lithium–Air Batteries

Recent studies have shown that many aprotic electrolytes used in lithium–air batteries are not stable against superoxide and peroxide species formed upon discharge and charge. However, the stability of polymers often used as binders and as electrolytes is poorly understood. In this work, we select a number of polymers heavily used in the Li–air/Li-ion battery literature, and examine their stability, and the changes in molecular structure in the presence of commercial Li2O2. Of the polymers studied, poly(acrylonitrile) (PAN), poly(vinyl chloride) (PVC), poly(vinylidene fluoride) (PVDF), poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), and poly(vinylpyrrolidone) (PVP) are reactive and unstable in the presence of Li2O2. The presence of the electrophilic nitrile group in PAN allows for nucleophilic attack by Li2O2 at the nitrile carbon, before further degradation of the polymer backbone. For the halogenated polymers, the presence of the electron-withdrawing halogens and adjacent α and β hydrogen a...

[1]  David G. Kwabi,et al.  Materials challenges in rechargeable lithium-air batteries , 2014 .

[2]  Jong-Won Lee,et al.  A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid. , 2014, Chemical communications.

[3]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[4]  Taewoo Kim,et al.  Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. , 2014, Angewandte Chemie.

[5]  David G. Kwabi,et al.  The influence of transition metal oxides on the kinetics of Li2O2 oxidation in Li-O2 batteries: high activity of chromium oxides. , 2014, Physical chemistry chemical physics : PCCP.

[6]  Wu Xu,et al.  Stability of polymer binders in Li–O2 batteries , 2013 .

[7]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[8]  Yang Shao-Horn,et al.  Reactivity of carbon in lithium-oxygen battery positive electrodes. , 2013, Nano letters.

[9]  Daniel Sharon,et al.  Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen , 2013 .

[10]  Haoshen Zhou,et al.  The pursuit of rechargeable solid-state Li–air batteries , 2013 .

[11]  Yang Shao-Horn,et al.  Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries , 2013 .

[12]  H. Gasteiger,et al.  Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes. , 2013, Physical chemistry chemical physics : PCCP.

[13]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[14]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[15]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[16]  Yang Shao-Horn,et al.  Chemical and Morphological Changes of Li–O2 Battery Electrodes upon Cycling , 2012 .

[17]  Kristina Edström,et al.  Ether Based Electrolyte, LiB(CN)4 Salt and Binder Degradation in the Li-O2 Battery Studied by Hard X-ray Photoelectron Spectroscopy (HAXPES) , 2012 .

[18]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[19]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[20]  Stefan A. Freunberger,et al.  Li-O2 battery with a dimethylformamide electrolyte. , 2012, Journal of the American Chemical Society.

[21]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[22]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[23]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[24]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[25]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[26]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[27]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[28]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[29]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[30]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[31]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[32]  Bruno Scrosati,et al.  Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. , 2011, Angewandte Chemie.

[33]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[34]  H. Gasteiger,et al.  Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries , 2010 .

[35]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[36]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[37]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[38]  M. K. Naskar,et al.  Synthesis and characterization of PVP-encapsulated ZnS nanoparticles , 2006 .

[39]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[40]  Masayoshi Watanabe,et al.  Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. , 2005, Journal of the American Chemical Society.

[41]  Suli Wang,et al.  FT-IR study of the microstructure of Nafion ® membrane , 2004 .

[42]  D. Macfarlane,et al.  Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles , 2003 .

[43]  Ian R. Harrison,et al.  MODIFICATION OF POLYACRYLONITRILE (PAN)CARBON FIBER PRECURSOR VIA POST-SPINNING PLASTICIZATION AND STRETCHING IN DIMETHYL FORMAMIDE (DMF) , 2002 .

[44]  M. Paoli,et al.  Influence of FeCl3 on the Mechanical, Thermal, and Dynamic Mechanical Behavior of PVC , 1997 .

[45]  K. M. Abraham,et al.  Characterization of some polyacrylonitrile-based electrolytes , 1997 .

[46]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[47]  J. Gardette,et al.  Mechanism of thermolysis, thermooxidation and photooxidation of polyacrylonitrile , 1994 .

[48]  A. Schouten,et al.  Thin-Film Behavior of Poly(methyl methacrylates). 2. An FT-IR Study of Langmuir-Blodgett Films of Isotactic PMMA , 1991 .

[49]  K. Abraham,et al.  Dimensionally stable MEEP-based polymer electrolytes and solid-state lithium batteries , 1991 .

[50]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[51]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[52]  K. M. Abraham,et al.  Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity , 1990 .

[53]  M. Fukuhara,et al.  FT‐IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers , 1986 .

[54]  V. Verneker,et al.  On coloration of polyacrylonitrile: a NMR study , 1986 .

[55]  W. F. Maddams,et al.  The chemical dehydrochlorination of poly(vinyl chloride), 1. Studies on tetrahydrofuran solutions , 1985 .

[56]  W. F. Maddams,et al.  The chemical dehydrochlorination of poly(vinyl chloride), 2. Studies on N,N‐dimethylformamide solutions , 1985 .

[57]  D. E. Cagliostro,et al.  Benzoic acid degradation of polyacrylonitrile fibers , 1981 .

[58]  M. Coleman,et al.  Fourier transform infrared studies on the thermal degradation of polyacrylonitrile , 1978 .

[59]  K. Tashiro,et al.  Molecular Vibrations of Three Crystal Forms of Poly(vinylidene fluoride) , 1975 .

[60]  H. Tadokoro,et al.  Normal Vibrations of the Polymer Molecules of Helical Conformation. IV. Polyethylene Oxide and Polyethylene‐d4 Oxide , 1964 .

[61]  H. Shimizu,et al.  High resolution NMR spectra of isotactic and syndiotactic polymethyl methacrylate in chloroform solution , 1960 .