Quaternion-Michelson Descriptor for Color Image Classification

In this paper, we develop a simple yet powerful framework called quaternion-Michelson descriptor (QMD) to extract local features for color image classification. Unlike traditional local descriptors extracted directly from the original (raw) image space, QMD is derived from the Michelson contrast law and the quaternionic representation (QR) of color images. The Michelson contrast is a stable measurement of image contents from the viewpoint of human perception, while QR is able to handle all the color information of the image holisticly and to preserve the interactions among different color channels. In this way, QMD integrates both the merits of Michelson contrast and QR. Based on the QMD framework, we further propose two novel quaternionic Michelson contrast binary pattern descriptors from different perspectives. Experiments and comparisons on different color image classification databases demonstrate that the proposed framework and descriptors outperform several state-of-the-art methods.

[1]  Lei Zhang,et al.  Image retrieval based on micro-structure descriptor , 2011, Pattern Recognit..

[2]  Luc Van Gool,et al.  Depth and Appearance for Mobile Scene Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[3]  Christine Fernandez-Maloigne,et al.  Spatial and spectral quaternionic approaches for colour images , 2007, Comput. Vis. Image Underst..

[4]  Xudong Jiang,et al.  LBP-Based Edge-Texture Features for Object Recognition , 2014, IEEE Transactions on Image Processing.

[5]  Joyce Van de Vegte,et al.  Fundamentals of Digital Signal Processing , 2001 .

[6]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[7]  Soo-Chang Pei,et al.  Color image processing by using binary quaternion-moment-preserving thresholding technique , 1999, IEEE Trans. Image Process..

[8]  Gang Chen,et al.  Color Image Analysis by Quaternion Zernike Moments , 2010, 2010 20th International Conference on Pattern Recognition.

[9]  Laurent Mascarilla,et al.  New geometric fourier descriptors for color image recognition , 2010, 2010 IEEE International Conference on Image Processing.

[10]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[11]  Francesco Bianconi,et al.  Rotation-invariant colour texture classification through multilayer CCR , 2009, Pattern Recognit. Lett..

[12]  Albert A. Michelson,et al.  Studies in Optics , 1995 .

[13]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[14]  Yuan Yan Tang,et al.  Person reidentification using quaternionic local binary pattern , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[15]  Arnold W. M. Smeulders,et al.  Color texture measurement and segmentation , 2005, Signal Process..

[16]  Yong Man Ro,et al.  Local Color Vector Binary Patterns From Multichannel Face Images for Face Recognition , 2012, IEEE Transactions on Image Processing.

[17]  André Ricardo Backes,et al.  Color Texture Classification Using Shortest Paths in Graphs , 2014, IEEE Transactions on Image Processing.

[18]  Maria Petrou,et al.  Histogram ratio features for color texture classification , 2003, Pattern Recognit. Lett..

[19]  L. Macaire,et al.  Haralick feature extraction from LBP images for color texture classification , 2008, 2008 First Workshops on Image Processing Theory, Tools and Applications.

[20]  Yuan Yan Tang,et al.  Quaternionic Weber Local Descriptor of Color Images , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[23]  Ming Zhu,et al.  Quaternion moment and its invariants for color object classification , 2014, Inf. Sci..

[24]  André Ricardo Backes,et al.  Color texture analysis based on fractal descriptors , 2012, Pattern Recognit..

[25]  R. Balasubramanian,et al.  Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking , 2012, Signal Process..

[26]  Sos S. Agaian,et al.  Multi-scale image enhancement using a second derivative-like measure of contrast , 2012, Electronic Imaging.

[27]  C. Won,et al.  Efficient Use of MPEG‐7 Edge Histogram Descriptor , 2002 .

[28]  Jiwen Lu,et al.  Neighborhood repulsed metric learning for kinship verification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Biao Wang,et al.  Patterns of Weber magnitude and orientation for uncontrolled face representation and recognition , 2015, Neurocomputing.

[30]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Jean-Philippe Uzan,et al.  Detecting topology in a nearly flat spherical universe , 2002, astro-ph/0209389.

[32]  Lonnie C. Ludeman,et al.  Fundamentals of Digital Signal Processing , 1986 .

[33]  Kohei Inoue,et al.  Gradient operators for feature extraction from omnidirectional panoramic images , 2015, Pattern Recognit. Lett..

[34]  Chee Sun Won,et al.  Efficient use of local edge histogram descriptor , 2000, MULTIMEDIA '00.

[35]  H. L. Hime “The Elements of Quaternions” , 1894, Nature.

[36]  Gang Chen,et al.  Color Image Analysis by Quaternion-Type Moments , 2014, Journal of Mathematical Imaging and Vision.

[37]  E. Peli In search of a contrast metric: Matching the perceived contrast of gabor patches at different phases and bandwidths , 1997, Vision Research.

[38]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  Sos Agaian,et al.  The design of wavelets for image enhancement and target detection , 2009, Defense + Commercial Sensing.

[40]  Ming Zhu,et al.  Quaternion Fourier-Mellin moments for color images , 2011, Pattern Recognit..

[41]  M. Pietikäinen,et al.  A robust descriptor based on Weber’s Law , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Gang Chen,et al.  Quaternion Zernike moments and their invariants for color image analysis and object recognition , 2012, Signal Process..

[43]  Yuan Yan Tang,et al.  Quaternionic Local Ranking Binary Pattern: A Local Descriptor of Color Images , 2016, IEEE Transactions on Image Processing.

[44]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2001, IEEE Transactions on Image Processing.

[45]  D J Field,et al.  Local Contrast in Natural Images: Normalisation and Coding Efficiency , 2000, Perception.

[46]  Eamonn J. Keogh,et al.  A compression‐based distance measure for texture , 2010, Stat. Anal. Data Min..

[47]  Yulong Wang,et al.  Quaternion Collaborative and Sparse Representation With Application to Color Face Recognition , 2016, IEEE Transactions on Image Processing.

[48]  C. Eddie Moxey,et al.  Hypercomplex correlation techniques for vector images , 2003, IEEE Trans. Signal Process..

[49]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[50]  Tanaya Guha,et al.  Image Similarity Using Sparse Representation and Compression Distance , 2012, IEEE Transactions on Multimedia.

[51]  Sei-ichiro Kamata,et al.  Hypercomplex polar Fourier analysis for color image , 2011, 2011 18th IEEE International Conference on Image Processing.

[52]  Jar-Ferr Yang,et al.  Histogram of gradient phases: a new local descriptor for face recognition , 2014, IET Comput. Vis..

[53]  T. Ell Hypercomplex spectral transformations , 1992 .