On Models and Methods for Global Optimization of Structural Topology

This thesis consists of an introduction and sevenindependent, but closely related, papers which all deal withproblems in structural optimization. In particular, we considermodels and methods for global optimization of problems intopology design of discrete and continuum structures.In the first four papers of the thesis the nonconvex problemof minimizing the weight of a truss structure subject to stressconstraints is considered. First itis shown that a certainsubclass of these problems can equivalently be cast as linearprograms and thus efficiently solved to global optimality.Thereafter, the behavior of a certain well-known perturbationtechnique is studied. It is concluded that, in practice, thistechnique can not guarantee that a global minimizer is found.Finally, a convergent continuous branch-and-bound method forglobal optimization of minimum weight problems with stress,displacement, and local buckling constraints is developed.Using this method, several problems taken from the literatureare solved with a proof of global optimality for the firsttime.The last three papers of the thesis deal with topologyoptimization of discretized continuum structures. Theseproblems are usually modeled as mixed or pure nonlinear 0-1programs. First, the behavior of certain often usedpenalization methods for minimum compliance problems isstudied. It is concluded that these methods may fail to producea zero-one solution to the considered problem. To remedy this,a material interpolation scheme based on a rational functionsuch that compli- ance becomes a concave function is proposed.Finally, it is shown that a broad range of nonlinear 0-1topology optimization problems, including stress- anddisplacement-constrained minimum weight problems, canequivalently be modeled as linear mixed 0-1 programs. Thisresult implies that any of the standard methods available forgeneral linear integer programming can now be used on topologyoptimization problems.Keywords:topology optimization, global optimization,stress constraints, linear programming, mixed integerprogramming, branch-and-bound.

[1]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[2]  J. Petersson,et al.  Large-scale topology optimization in 3D using parallel computing , 2001 .

[3]  M. Bendsøe,et al.  Topology optimization of continuum structures with local stress constraints , 1998 .

[4]  Ole Sigmund,et al.  New Developments in Handling Stress Constraints in Optimal Material Distributions , 1998 .

[5]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[6]  George I. N. Rozvany,et al.  On singular topologies in exact layout optimization , 1994 .

[7]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[8]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[9]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[10]  G. I. N. Rozvany,et al.  New optimality criteria methods: Forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections , 1992 .

[11]  Gengdong Cheng,et al.  STUDY ON TOPOLOGY OPTIMIZATION WITH STRESS CONSTRAINTS , 1992 .

[12]  Arkadi Nemirovski,et al.  Potential Reduction Polynomial Time Method for Truss Topology Design , 1994, SIAM J. Optim..

[13]  C. S. Jog,et al.  A new approach to variable-topology shape design using a constraint on perimeter , 1996 .

[14]  G. Rozvany On design-dependent constraints and singular topologies , 2001 .

[15]  Wolfgang Achtziger,et al.  Local stability of trusses in the context of topology optimization Part II: A numerical approach , 1999 .

[16]  M. Jakiela,et al.  Genetic algorithm-based structural topology design with compliance and topology simplification considerations , 1996 .

[17]  Florian Jarre,et al.  Optimal Truss Design by Interior-Point Methods , 1998, SIAM J. Optim..

[18]  J. Petersson,et al.  On continuity of the design-to-state mappings for trusses with variable topology , 2001 .

[19]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[20]  Martin P. Bendsøe,et al.  A New Method for Optimal Truss Topology Design , 1993, SIAM J. Optim..

[21]  B. Bourdin Filters in topology optimization , 2001 .

[22]  T. Borrvall Topology optimization of elastic continua using restriction , 2001 .

[23]  Wolfgang Achtziger,et al.  Local stability of trusses in the context of topology optimization Part I: Exact modelling , 1999 .

[24]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[25]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[26]  G. I. N. Rozvany,et al.  Difficulties in truss topology optimization with stress, local buckling and system stability constraints , 1996 .

[27]  G. Sved,et al.  Structural optimization under multiple loading , 1968 .

[28]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[29]  Ole Sigmund,et al.  Topology synthesis of large‐displacement compliant mechanisms , 2001 .

[30]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[31]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[32]  Einar M. Rønquist,et al.  A computational procedure for part design , 1992 .

[33]  Srinivas Bollapragada,et al.  Optimal Design of Truss Structures by Logic-Based Branch and Cut , 2001, Oper. Res..

[34]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[35]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[36]  Ignacio E. Grossmann,et al.  Mixed-integer linear programming reformulations for some nonlinear discrete design optimization problems , 1992 .

[37]  J. Petersson Some convergence results in perimeter-controlled topology optimization , 1999 .

[38]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[39]  Harvey J. Greenberg,et al.  Automatic design of optimal structures , 1964 .

[40]  Anthony T. Patera,et al.  Analysis of a part design procedure , 1995 .

[41]  O. Sigmund A new class of extremal composites , 2000 .

[42]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[43]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[44]  U. Kirsch,et al.  On singular topologies in optimum structural design , 1990 .

[45]  K. Yamazaki,et al.  A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints , 2001 .

[46]  Luis Simões SEARCH FOR THE GLOBAL OPTIMUM OF LEAST VOLUME TRUSSES , 1987 .

[47]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[48]  J. Petersson,et al.  Topology optimization using regularized intermediate density control , 2001 .

[49]  G. Cheng,et al.  ε-relaxed approach in structural topology optimization , 1997 .

[50]  O. Sigmund,et al.  Checkerboard patterns in layout optimization , 1995 .

[51]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[52]  Gengdong Cheng,et al.  Some aspects of truss topology optimization , 1995 .

[53]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[54]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[55]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[56]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .