The geometry of r-adaptive meshes generated using optimal transport methods
暂无分享,去创建一个
[1] Jens Lang,et al. A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates , 2010, J. Comput. Phys..
[2] Tao Tang,et al. Moving Mesh Methods for Computational Fluid Dynamics , 2022 .
[3] Weiming Cao,et al. On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..
[4] Pascal Frey,et al. Anisotropic mesh adaptation for CFD computations , 2005 .
[5] M. J. P. Cullen,et al. A new implementation of the adaptive mesh transform in the Met Office 3D‐Var System , 2012 .
[6] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[7] J. Hyman,et al. An adaptive moving mesh method with static rezoning for partial differential equations , 2003 .
[8] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[9] Robert D. Russell,et al. Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..
[10] Tao Tang,et al. An adaptive mesh redistribution algorithm for convection-dominated problems , 2002 .
[11] Tao Tang,et al. Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..
[12] G. Loeper,et al. Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .
[13] Robert D. Russell,et al. Adaptive Moving Mesh Methods , 2010 .
[14] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[15] Robert Vichnevetsky,et al. Spurious scattering from discontinuously stretching grids in computational fluid dynamics , 1991 .
[16] Philip Browne,et al. Fast three dimensional r-adaptive mesh redistribution , 2014, J. Comput. Phys..
[17] Paul-Louis George,et al. Creation of internal points in Voronoi's type method. Control adaptation , 1991 .
[18] P. George,et al. Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .
[19] Patrick J. Roache,et al. Variational grid generation , 1986 .
[20] Merle,et al. On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation , 2012, 1202.5218.
[21] J. F. Williams,et al. Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions , 2006 .
[22] Weizhang Huang. Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .
[23] Frédéric Alauzet,et al. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..
[24] Chris J. Budd,et al. Monge-Ampére based moving mesh methods for numerical weather prediction, with applications to the Eady problem , 2013, J. Comput. Phys..
[25] Thomas Y. Hou,et al. An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .
[26] Weizhang Huang,et al. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems , 2010, J. Comput. Phys..
[27] Zhijian Chen,et al. A Simple and Effective Mesh Quality Metric for Hexahedral and Wedge Elements , 2000, IMR.
[28] K. Karlsen,et al. The corrected operator splitting approach applied to a nonlinear advection-diffusion problem , 1998 .
[29] Mike J. Baines. Least squares and approximate equidistribution in multidimensions , 1999 .
[30] Robert D. Russell,et al. Optimal mass transport for higher dimensional adaptive grid generation , 2011, J. Comput. Phys..
[31] John M. Stockie,et al. A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..
[32] Gian Luca Delzanno,et al. An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..
[33] Mark S. Shephard,et al. 3D anisotropic mesh adaptation by mesh modification , 2005 .
[34] Piotr K. Smolarkiewicz,et al. A Monge-Ampère enhancement for semi-Lagrangian methods , 2011 .
[35] L. Caffarelli. Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .
[36] A. Dvinsky. Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .
[37] Adam M. Oberman,et al. Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..
[38] A. M. Winslow. Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .
[39] Robert Vichnevetsky,et al. Wave propagation and reflection in irregular grids for hyperbolic equations , 1987 .
[40] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[41] Li Zheng,et al. Adaptive moving mesh methods for simulating one‐dimensional groundwater problems with sharp moving fronts , 2002 .
[42] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[43] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[44] Robert D. Russell,et al. Adaptivity with moving grids , 2009, Acta Numerica.
[45] M. Fortin,et al. Anisotropic mesh adaptation : Theory, validation and applications , 1996 .
[46] S. SIAMJ.. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .
[47] R. B. Simpson. Anisotropic mesh transformations and optimal error control , 1994 .
[48] L. Formaggia,et al. Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .
[49] Gian Luca Delzanno,et al. Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution , 2011, J. Comput. Phys..
[50] Christian Kühnlein,et al. Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..
[51] Brittany D. Froese. A Numerical Method for the Elliptic Monge-Ampère Equation with Transport Boundary Conditions , 2011, SIAM J. Sci. Comput..
[52] Patrick M. Knupp,et al. Jacobian-Weighted Elliptic Grid Generation , 1996, SIAM J. Sci. Comput..
[53] Weizhang Huang,et al. Metric tensors for anisotropic mesh generation , 2005 .
[54] J. F. Williams,et al. MOVING MESH GENERATION USING THE PARABOLIC MONGE–AMPÈRE EQUATION∗ , 2008 .
[55] Paul Charbonneau,et al. The Monge-Ampère trajectory correction for semi-Lagrangian schemes , 2014, J. Comput. Phys..