The geometry of r-adaptive meshes generated using optimal transport methods

The principles of mesh equidistribution and alignment play a fundamental role in the design of adaptive methods, and a metric tensor and mesh metric are useful theoretical tools for understanding a method's level of mesh alignment, or anisotropy. We consider a mesh redistribution method based on the Monge-Ampere equation which combines equidistribution of a given scalar density function with optimal transport. It does not involve explicit use of a metric tensor, although such a tensor must exist for the method, and an interesting question to ask is whether or not the alignment produced by the metric gives an anisotropic mesh. For model problems with a linear feature and with a radially symmetric feature, we derive the exact form of the metric, which involves expressions for its eigenvalues and eigenvectors. The eigenvectors are shown to be orthogonal and tangential to the feature, and the ratio of the eigenvalues (corresponding to the level of anisotropy) is shown to depend, both locally and globally, on the value of the density function and the amount of curvature. We thereby demonstrate how the optimal transport method produces an anisotropic mesh along a given feature while equidistributing a suitably chosen scalar density function. Numerical results are given to verify these results and to demonstrate how the analysis is useful for problems involving more complex features, including for a non-trivial time dependant nonlinear PDE which evolves narrow and curved reaction fronts.

[1]  Jens Lang,et al.  A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates , 2010, J. Comput. Phys..

[2]  Tao Tang,et al.  Moving Mesh Methods for Computational Fluid Dynamics , 2022 .

[3]  Weiming Cao,et al.  On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..

[4]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[5]  M. J. P. Cullen,et al.  A new implementation of the adaptive mesh transform in the Met Office 3D‐Var System , 2012 .

[6]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[7]  J. Hyman,et al.  An adaptive moving mesh method with static rezoning for partial differential equations , 2003 .

[8]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[9]  Robert D. Russell,et al.  Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..

[10]  Tao Tang,et al.  An adaptive mesh redistribution algorithm for convection-dominated problems , 2002 .

[11]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[12]  G. Loeper,et al.  Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .

[13]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[14]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[15]  Robert Vichnevetsky,et al.  Spurious scattering from discontinuously stretching grids in computational fluid dynamics , 1991 .

[16]  Philip Browne,et al.  Fast three dimensional r-adaptive mesh redistribution , 2014, J. Comput. Phys..

[17]  Paul-Louis George,et al.  Creation of internal points in Voronoi's type method. Control adaptation , 1991 .

[18]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[19]  Patrick J. Roache,et al.  Variational grid generation , 1986 .

[20]  Merle,et al.  On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation , 2012, 1202.5218.

[21]  J. F. Williams,et al.  Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions , 2006 .

[22]  Weizhang Huang Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .

[23]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[24]  Chris J. Budd,et al.  Monge-Ampére based moving mesh methods for numerical weather prediction, with applications to the Eady problem , 2013, J. Comput. Phys..

[25]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[26]  Weizhang Huang,et al.  An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems , 2010, J. Comput. Phys..

[27]  Zhijian Chen,et al.  A Simple and Effective Mesh Quality Metric for Hexahedral and Wedge Elements , 2000, IMR.

[28]  K. Karlsen,et al.  The corrected operator splitting approach applied to a nonlinear advection-diffusion problem , 1998 .

[29]  Mike J. Baines Least squares and approximate equidistribution in multidimensions , 1999 .

[30]  Robert D. Russell,et al.  Optimal mass transport for higher dimensional adaptive grid generation , 2011, J. Comput. Phys..

[31]  John M. Stockie,et al.  A Moving Mesh Method for One-dimensional Hyperbolic Conservation Laws , 2000, SIAM J. Sci. Comput..

[32]  Gian Luca Delzanno,et al.  An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..

[33]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[34]  Piotr K. Smolarkiewicz,et al.  A Monge-Ampère enhancement for semi-Lagrangian methods , 2011 .

[35]  L. Caffarelli Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .

[36]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[37]  Adam M. Oberman,et al.  Numerical solution of the Optimal Transportation problem using the Monge-Ampère equation , 2012, J. Comput. Phys..

[38]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[39]  Robert Vichnevetsky,et al.  Wave propagation and reflection in irregular grids for hyperbolic equations , 1987 .

[40]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[41]  Li Zheng,et al.  Adaptive moving mesh methods for simulating one‐dimensional groundwater problems with sharp moving fronts , 2002 .

[42]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[43]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[44]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[45]  M. Fortin,et al.  Anisotropic mesh adaptation : Theory, validation and applications , 1996 .

[46]  S. SIAMJ. MEASURING MESH QUALITIES AND APPLICATION TO VARIATIONAL MESH ADAPTATION , 2005 .

[47]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[48]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[49]  Gian Luca Delzanno,et al.  Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution , 2011, J. Comput. Phys..

[50]  Christian Kühnlein,et al.  Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..

[51]  Brittany D. Froese A Numerical Method for the Elliptic Monge-Ampère Equation with Transport Boundary Conditions , 2011, SIAM J. Sci. Comput..

[52]  Patrick M. Knupp,et al.  Jacobian-Weighted Elliptic Grid Generation , 1996, SIAM J. Sci. Comput..

[53]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[54]  J. F. Williams,et al.  MOVING MESH GENERATION USING THE PARABOLIC MONGE–AMPÈRE EQUATION∗ , 2008 .

[55]  Paul Charbonneau,et al.  The Monge-Ampère trajectory correction for semi-Lagrangian schemes , 2014, J. Comput. Phys..