The stellar content of the Hamburg/ESO survey - V. The metallicity distribution function of the Galactic halo

We determine the metallicity distribution function (MDF) of the Galactic halo by means of a sample of 1638 metal-poor stars selected from the Hamburg/ESO objective-prism survey (HES). The sample was corrected for minor biases introduced by the strategy for spectroscopic follow-up observations of the metal-poor candidates, namely "best and brightest stars first". Comparison of the metallicities [Fe/H] of the stars determined from moderate-resolution (i.e., R similar to 2000) follow-up spectra with results derived from abundance analyses based on high-resolution spectra (i.e., R > 20 000) shows that the [Fe/H] estimates used for the determination of the halo MDF are accurate to within 0.3 dex, once highly C-rich stars are eliminated. We determined the selection function of the HES, which must be taken into account for a proper comparison between the HES MDF with MDFs of other stellar populations or those predicted by models of Galactic chemical evolution. The latter show a reasonable agreement with the overall shape of the HES MDF for [Fe/H] > -3.6, but only a model of Salvadori et al. (2007) with a critical metallicity for low-mass star formation of Z(cr) = 10(-3.4) Z(circle dot) reproduces the sharp drop at [Fe/H] similar to -3.6 present in the HES MDF. Although currently about ten stars at [Fe/H] < -3.6 are known, the evidence for the existence of a tail of the halo MDF extending to [Fe/H] similar to -5.5 is weak from the sample considered in this paper, because it only includes two stars [Fe/H] < -3.6. Therefore, a comparison with theoretical models has to await larger statistically complete and unbiased samples. A comparison of the MDF of Galactic globular clusters and of dSph satellites to the Galaxy shows qualitative agreement with the halo MDF, derived from the HES, once the selection function of the latter is included. However, statistical tests show that the differences between these are still highly significant.

[1]  A. Loeb,et al.  The formation of the first low-mass stars from gas with low carbon and oxygen abundances , 2003, Nature.

[2]  Coryn A. L. Bailer-Jones,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[3]  K. Omukai Protostellar Collapse with Various Metallicities , 2000, astro-ph/0003212.

[4]  Takeo Minezaki,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[5]  Andrea Ferrara,et al.  Cosmic stellar relics in the Galactic halo , 2007 .

[6]  V. Smith,et al.  “Sculptor-ing” the Galaxy? The Chemical Compositions of Red Giants in the Sculptor Dwarf Spheroidal Galaxy , 2004, astro-ph/0412065.

[7]  Low-mass relics of early star formation , 2003, Nature.

[8]  W. Sargent,et al.  Inferences from the Composition of Two Dwarf Blue Galaxies , 1972 .

[9]  A. Frebel,et al.  Probing the formation of the first low‐mass stars with stellar archaeology , 2007, astro-ph/0701395.

[10]  John E. Norris,et al.  Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method , 1999 .

[11]  Michael S. Bessell,et al.  SkyMapper and the Southern Sky Survey , 2008 .

[12]  J. B. Laird,et al.  A Survey of Proper Motion Stars. XIII. The Halo Population , 1996 .

[13]  N. Christlieb,et al.  The stellar content of the Hamburg/ESO survey , IV. Selection of candidate metal-poor stars , 2008 .

[14]  The Oxygen Abundance of HE 1327-2326 , 2005, astro-ph/0512543.

[15]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[16]  S. Shectman,et al.  The Frequency of Carbon Stars among Extremely Metal-poor Stars , 2005, astro-ph/0510105.

[17]  First Stars, Very Massive Black Holes, and Metals , 2001, astro-ph/0111341.

[18]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[19]  S. Ryan,et al.  Subdwarf studies. III, The halo metallicity distribution , 1991 .

[20]  The DART Imaging And CaT Survey of the Fornax Dwarf Spheroidal Galaxy , 2006, astro-ph/0608370.

[21]  Jason Tumlinson Chemical Evolution in Hierarchical Models of Cosmic Structure. I. Constraints on the Early Stellar Initial Mass Function , 2006 .

[22]  M. Bellazzini,et al.  High-resolution spectroscopy of RGB stars in the Sagittarius streams. I. Radial velocities and chemical abundances , 2006, astro-ph/0611070.

[23]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[24]  L. Wisotzki,et al.  New Extremely Metal-Poor Stars in the Galactic Halo , 2007, 0709.0029.

[25]  N. Christlieb,et al.  HE 0107-5240, A CHEMICALLY ANCIENT STAR. I. A DETAILED ABUNDANCE ANALYSIS , 2004 .

[26]  Puragra Guhathakurta,et al.  Uncovering Extremely Metal-Poor Stars in the Milky Way’s Ultrafaint Dwarf Spheroidal Satellite Galaxies , 2008, 0807.1925.

[27]  L. Wisotzki,et al.  The stellar content of the hamburg/eso survey. I. automated selection of da white dwarfs , 2000, astro-ph/0011453.

[28]  Astrophysics,et al.  The Third Stromlo Symposium - The Galactic Halo: Bright Stars and Dark Matter , 1999 .

[29]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[30]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[31]  A. Ferrara,et al.  Ultra faint dwarfs: probing early cosmic star formation , 2008, 0812.3151.

[32]  T. Karlsson Primordial Stellar Feedback and the Origin of Hyper-Metal-poor Stars , 2006, astro-ph/0602597.

[33]  B. Yanny,et al.  Submitted for publication in the Astronomical Journal The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars 1 , 2022 .

[34]  T. Beers,et al.  The stellar content of the Hamburg/ESO survey - VI. Metallicity distribution of main-sequence turnoff stars in the Galactic halo , 2010, 1006.3985.

[35]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[36]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[37]  F.-J. Zickgraf,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.

[38]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[39]  E. Emsellem,et al.  CRAL-2006. Chemodynamics: From First Stars to Local Galaxies , 2007 .

[40]  V. Hill,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[41]  Carbon Stars in the Hamburg/ESO Survey: Abundances* , 2006, astro-ph/0603582.

[42]  N. Christlieb,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[43]  T. Beers,et al.  He 1327-2326, an unevolved star with [Fe/H] < -5.0. I. A comprehensive abundance analysis , 2005, astro-ph/0509206.

[44]  F. Hartwick The chemical evolution of the galactic halo , 1976 .

[45]  R. Klessen,et al.  The First Stellar Cluster , 2007, 0706.0613.

[46]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[47]  The stellar content of the Hamburg/ESO survey. II. A large, homogeneously-selected sample of high latitude carbon stars , 2001, astro-ph/0106240.

[48]  Judith G. Cohen,et al.  THE CHEMICAL EVOLUTION OF THE DRACO DWARF SPHEROIDAL GALAXY , 2009, 0906.1006.

[49]  T. Beers,et al.  Bright Metal-poor Stars from the Hamburg/ESO Survey. I. Selection and Follow-up Observations from 329 Fields , 2006, astro-ph/0608332.

[50]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[51]  A. Ferrara,et al.  Life and times of dwarf spheroidal galaxies , 2008, 0802.0462.

[52]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[53]  E. D. Friel,et al.  Galactic Globular Cluster Metallicity Scale from the Ca II Triplet I. Catalog , 1997 .

[54]  Hideyuki Umeda,et al.  First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star , 2003, Nature.

[55]  M. Shetrone,et al.  Keck HIRES Abundances in the Dwarf Spheroidal Galaxy Draco , 1998 .

[56]  Vanessa Hill,et al.  The Kinematic Status and Mass Content of the Sculptor Dwarf Spheroidal Galaxy , 2008, 0802.4220.

[57]  Mark I. Wilkinson,et al.  The Abundance Spread in the Boötes I Dwarf Spheroidal Galaxy , 2008 .

[58]  V. Smith,et al.  Chemical Abundances and Kinematics in Globular Clusters and Local Group Dwarf Galaxies and Their Implications for Formation Theories of the Galactic Halo , 2007, 0708.0570.

[59]  D. Alexander,et al.  The Y2 Isochrones for α-Element Enhanced Mixtures , 2002, astro-ph/0208175.

[60]  A. Kaufer,et al.  A new view of the dwarf spheroidal satellites of the Milky Way from VLT flames: Where are the very metal-poor stars? , 2006 .

[61]  J. Shull,et al.  Critical Metallicity and Fine-Structure Emission of Primordial Gas Enriched by the First Stars , 2005, astro-ph/0509101.

[62]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[63]  H. Bond Where is population III , 1981 .

[64]  M. Bessell,et al.  On the Oxygen Abundance of HE 0107–5240 , 2004, astro-ph/0401450.

[65]  The fragmentation of pre-enriched primordial objects , 2001 .

[66]  G. Wasserburg,et al.  Abundances In Very Metal-Poor Dwarf Stars , 2004, astro-ph/0405286.

[67]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[68]  T. Beers,et al.  A Search for Stars of Very Low Metal Abundance. III. UBV Photometry of Metal-weak Candidates , 1985 .

[69]  William H. Press,et al.  Numerical recipes in C , 2002 .

[70]  T. Beers,et al.  The stellar content of the Hamburg/ESO survey. III. Field horizontal-branch stars in the Galaxy , 2004, astro-ph/0411300.

[71]  D. Reimers A wide-angle objective prism survey for bright quasars. , 1990 .

[72]  T. Beers,et al.  The Frequency of Carbon-enhanced Metal-poor Stars in the Galaxy from the HERES Sample , 2006, astro-ph/0609730.