Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method

We present an application of the residual-based variational multiscale turbulence modeling (RBVMS) methodology to the computation of turbulent Taylor-Couette flow at high Reynolds number. We show that the RBVMS formulation globally conserves angular momentum, a feature that is felt to be important for flows dominated by rotation, and that is not shared by standard stabilized formulations of fluid flow. Weak imposition of Dirichlet boundary conditions is employed to enhance the accuracy of the RBVMS framework in the presence of thin turbulent boundary layers near solid walls. Calculation of conservative boundary forces and torques is also presented for the case of weakly enforced boundary conditions. NURBS-based isogeometric analysis is employed for the spatial discretization, and mesh refinement is performed to assess the convergence characteristics of the proposed methodology. Numerical tests show that very accurate results are obtained on relatively coarse grids. To the best of the authors' knowledge, this paper is the first to report large eddy simulation computations of this challenging test case.

[1]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[2]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[3]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[4]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[5]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[6]  Parviz Moin,et al.  Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows , 1996 .

[7]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[8]  Parviz Moin,et al.  B-Spline Method and Zonal Grids for Simulations of Complex Turbulent Flows , 1997 .

[9]  Paolo Orlandi,et al.  TURBULENT BUDGETS IN ROTATING PIPES BY DNS , 2000, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.

[10]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[11]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[12]  R. Moser,et al.  Two-Dimensional Mesh Embedding for B-spline Methods , 1998 .

[13]  Suchuan Dong,et al.  Turbulent flow between counter-rotating concentric cylinders: a direct numerical simulation study , 2008, Journal of Fluid Mechanics.

[14]  Javier Jiménez,et al.  A critical evaluation of the resolution properties of B-Spline and compact finite difference methods , 2001 .

[15]  Thomas J. R. Hughes,et al.  Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations , 2004 .

[16]  T. Hughes,et al.  Sensitivity of the scale partition for variational multiscale LES of channel flow , 2004 .

[17]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[18]  Parviz Moin,et al.  A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow , 1983 .

[19]  G. S. Lewis,et al.  Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  C. G. Speziale,et al.  On consistency conditions for rotating turbulent flows , 1998 .

[21]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[22]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[23]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[24]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[25]  Robert D. Moser,et al.  Short-time Lyapunov exponent analysis and the transition to chaos in Taylor–Couette flow , 1991, Journal of Fluid Mechanics.

[26]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[27]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[28]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[29]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[30]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[31]  Bruno Eckhardt,et al.  DNS of turbulent co- and counterrotating Taylor Couette flow up to Re=30,000 , 2012 .

[32]  George Em Karniadakis,et al.  Spectral Element and hp Methods , 2004 .

[33]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[34]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[35]  Gerald Farin,et al.  NURBS: From Projective Geometry to Practical Use , 1999 .

[36]  M. Quadrio,et al.  Direct Numerical Simulation of turbulent Taylor-Couette flow , 2007, 0711.1429.

[37]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[38]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[39]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[40]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[41]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[42]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[43]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[44]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[45]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[46]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[47]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[48]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[49]  Thomas J. R. Hughes,et al.  Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow , 2004 .

[50]  T. Hughes,et al.  Variational and Multiscale Methods in Turbulence , 2005 .

[51]  Klaus Bremhorst,et al.  Direct numerical simulation of turbulent Taylor–Couette flow , 2007, Journal of Fluid Mechanics.

[52]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[53]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[54]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .