Higher order dynamic mode decomposition of noisy experimental data: The flow structure of a zero-net-mass-flux jet

A method is presented to treat complex experimental flow data resulting from PIV. The method is based on an appropriate combination of higher order singular value decomposition (which cleans the data along the temporal dimension and the various space dimensions) and higher order dynamic mode decomposition (HODMD), a recent extension of standard dynamic mode decomposition that treats the data in a sliding window. The performance of the method is tested using experimental data obtained in the near field of a zero-net-mass-flux (ZNMF) jet. The better performance of HODMD is put in evidence making this technique suitable to both, cleaning the experimental noise using a limited number of snapshots and obtaining robust and sufficiently accurate results that elucidate the spatio-temporal structure of the flow. The results show that this ZNMF jet is temporally periodic in the near field, where the flow results from the interaction of a large number harmonics. These harmonics involve large scale spatial flow structures, identified as spatially growing instabilities, which are associated with the flow transition to turbulence in the far field.

[1]  A. Velazquez,et al.  Generation of Aerodynamics Databases Using High-Order Singular Value Decomposition , 2008 .

[2]  Ari Glezer,et al.  Jet vectoring using synthetic jets , 2002, Journal of Fluid Mechanics.

[3]  A. Velazquez,et al.  Compression of aerodynamic databases using high-order singular value decomposition , 2010 .

[4]  Soledad Le Clainche,et al.  Flow around a hemisphere-cylinder at high angle of attack and low Reynolds number. Part II: POD and DMD applied to reduced domains , 2015 .

[5]  Time-resolved stereo PIV measurements in the far-field of a turbulent zero-net-mass-flux jet , 2014 .

[6]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[7]  William H. Press,et al.  Numerical recipes in C , 2002 .

[8]  J. Soria An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique , 1996 .

[9]  Damon Honnery,et al.  An error analysis of the dynamic mode decomposition , 2011, Experiments in Fluids.

[10]  Peter J. Schmid,et al.  Decomposition of time-resolved tomographic PIV , 2012 .

[11]  S. de Lucas,et al.  Aeronautic Conceptual Design Optimization Method Based on High-Order Singular Value Decomposition , 2011 .

[12]  John M. Gosline,et al.  Mechanics of Jet Propulsion in the Hydromedusan Jellyfish, Polyorchis Pexicillatus: III. A Natural Resonating Bell; The Presence and Importance of a Resonant Phenomenon in the Locomotor Structure , 1988 .

[13]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[14]  H. Wang,et al.  Fuel-Air Mixing Enhancement by Synthetic Microjets , 2001 .

[15]  Sheila E. Widnall,et al.  The instability of the thin vortex ring of constant vorticity , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[16]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[17]  J. Soria,et al.  The interaction of the piston vortex with a piston-generated vortex ring , 2004, Journal of Fluid Mechanics.

[18]  J. Soria,et al.  Multigrid CCDPIV measurements of accelerated flow past an airfoil at an angle of attack of 30 , 2003 .

[19]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[21]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[22]  John Cater,et al.  The evolution of round zero-net-mass-flux jets , 2002, Journal of Fluid Mechanics.

[23]  Steven L. Brunton,et al.  Sparse Identification of Nonlinear Dynamics (SINDy) , 2016 .

[24]  F. Takens Detecting strange attractors in turbulence , 1981 .

[25]  J. Soria,et al.  Time-resolved Particle Image Velocimetry and Structural Analysis on An Hemisphere-Cylinder at Low Reynolds Numbers and Large Angle of Incidence , 2012 .

[26]  Peter J. Schmid,et al.  Application of the dynamic mode decomposition to experimental data , 2011 .

[27]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[28]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[29]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[30]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[31]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[32]  M. Amitay,et al.  Electronic Cooling Using Synthetic Jet Impingement , 2006 .

[33]  Vassilios Theofilis,et al.  Four Decades of Studying Global Linear Instability: Progress and Challenges , 2012 .

[34]  A. Glezer,et al.  The formation and evolution of synthetic jets , 1998 .

[35]  Julio Soria,et al.  Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data , 1998 .

[36]  John M. Gosline,et al.  Mechanics of Jet Propulsion in the Hydromedusan Jellyfish, Polyorchis Penicillatus: II. Energetics of the Jet Cycle , 1988 .

[37]  Experimental Studies of the Near-Field Spatio-Temporal Evolution of Zero-Net-Mass-Flux (ZNMF) Jets , 2015 .

[38]  José M. Vega,et al.  Real time performance improvement of engineering control units via Higher Order Singular Value Decomposition: Application to a SI engine , 2011 .

[39]  R. A. Antonia,et al.  Conditional Sampling in Turbulence Measurement , 1981 .

[40]  Soledad Le Clainche,et al.  Flow around a hemisphere-cylinder at high angle of attack and low Reynolds number. Part I: Experimental and numerical investigation , 2015 .

[41]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[42]  A. Fouras,et al.  Accuracy of out-of-plane vorticity measurements using in-plane velocity vector field data , 1998 .

[43]  Louis N. Cattafesta,et al.  Actuators for Active Flow Control , 2011 .

[44]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.