Observational properties of extreme supernovae

The last ten years have opened up a new parameter space in time-domain astronomy with the discovery of transients defying our understanding of how stars explode. These extremes of the transient paradigm represent the brightest - called superluminous supernova - and the fastest - known as fast, blue optical transients - of the transient zoo. The number of their discoveries and information gained per event have witnessed an exponential growth that has benefited observational and theoretical studies. The collected dataset and the understanding of such events have surpassed any initial expectation and opened up a future exploding with potential, spanning from novel tools of high-redshift cosmological investigation to new insights into the final stages of massive stars. Here, the observational properties of extreme supernovae are reviewed and put in the context of their physics, possible progenitor scenarios and explosion mechanisms.

[1]  David O. Jones,et al.  PS1-14bj: A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY , 2016, 1605.05235.

[2]  E. Ofek,et al.  THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION , 2014, 1409.8287.

[3]  M. Phillips,et al.  A nearby super-luminous supernova with a long pre-maximum & “plateau” and strong C II features , 2018, Astronomy & Astrophysics.

[4]  S. Smartt,et al.  SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES , 2014, 1409.4429.

[5]  M. Sullivan,et al.  Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2018, 1802.07820.

[6]  S. Cenko,et al.  SN 2011hw: Helium-Rich Circumstellar Gas and the Luminous Blue Variable to Wolf-Rayet Transition in Supernova Progenitors , 2012, 1204.0043.

[7]  R. Kotak,et al.  The host galaxy and late-time evolution of the superluminous supernova PTF12dam , 2014, 1409.7728.

[8]  Las Cumbres Observatory Global Telescope Network,et al.  ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.

[9]  K. Maguire,et al.  SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.

[10]  E. Berger,et al.  One Thousand Days of SN2015bn: HST Imaging Shows a Light Curve Flattening Consistent with Magnetar Predictions , 2018, The Astrophysical Journal.

[11]  E. Ofek,et al.  DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA , 2015, 1508.04420.

[12]  H Germany,et al.  Spectrum formation in superluminous supernovae (Type I) , 2016, 1603.00388.

[13]  O. Fox,et al.  Signatures of circumstellar interaction in the unusual transient AT 2018cow , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  D. Malesani,et al.  Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope , 2017, 1702.05494.

[15]  M. Sullivan,et al.  LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE , 2015, 1505.01078.

[16]  J. Wheeler,et al.  ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: χ2-MINIMIZATION OF PARAMETER FITS , 2013, 1306.3447.

[17]  E. Ofek,et al.  Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.

[18]  W. M. Wood-Vasey,et al.  Pan-STARRS1 DISCOVERY OF TWO ULTRALUMINOUS SUPERNOVAE AT z ≈ 0.9 , 2011, 1107.3552.

[19]  S. Smartt,et al.  SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY , 2016, 1607.02353.

[20]  K. Maguire,et al.  OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION , 2014, 1410.6473.

[21]  T. Morokuma,et al.  Obscured Star Formation in the Host Galaxies of Superluminous Supernovae , 2018, 1803.02185.

[22]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[23]  O. Graur,et al.  THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS , 2015, 1509.07124.

[24]  E. Ofek,et al.  Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd , 2016, 1611.02782.

[25]  E. Berger,et al.  Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations , 2017, 1711.03428.

[26]  F. Bianco,et al.  Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae , 2016, 1612.07321.

[27]  P. Brown,et al.  X-ray Swift observations of SN 2018cow , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[28]  K. Nomoto,et al.  Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.

[29]  P. Astier,et al.  RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP , 2015, 1511.00704.

[30]  S. Smartt,et al.  Superluminous supernova progenitors have a half-solar metallicity threshold , 2016, 1605.04925.

[31]  E. Berger,et al.  Results from a Systematic Survey of X-Ray Emission from Hydrogen-poor Superluminous SNe , 2017, The Astrophysical Journal.

[32]  M. Sullivan,et al.  The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.

[33]  J. Guillochon,et al.  A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT? , 2014, 1410.6014.

[34]  R. Chevalier,et al.  Superluminous Supernovae , 2018, Space Science Reviews.

[35]  E. Ofek,et al.  ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE , 2016, 1609.08145.

[36]  S. Blondin,et al.  Superluminous supernovae: 56Ni power versus magnetar radiation , 2012, 1208.1214.

[37]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[38]  L. Tartaglia,et al.  Massive stars exploding in a He-rich circumstellar medium – IX. SN 2014av, and characterization of Type Ibn SNe , 2015, 1509.09069.

[39]  A. Levan,et al.  SUPERLUMINOUS X-RAYS FROM A SUPERLUMINOUS SUPERNOVA , 2013, 1304.1173.

[40]  E. Berger,et al.  Nebular-phase Spectra of Superluminous Supernovae: Physical Insights from Observational and Statistical Properties , 2018, The Astrophysical Journal.

[41]  R. Nichol,et al.  DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP , 2015, 1512.06043.

[42]  K. Maguire,et al.  Complexity in the light curves and spectra of slow-evolving superluminous supernovae , 2017, 1701.00941.

[43]  M. Sullivan,et al.  A Statistical Approach to Identify Superluminous Supernovae and Probe Their Diversity , 2017, 1711.03787.

[44]  D. Malesani,et al.  Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.

[45]  P. Vreeswijk,et al.  A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova , 2018, Nature Astronomy.

[46]  K. Nomoto,et al.  TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES , 2015, 1510.00834.

[47]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[48]  The Death Throes of a Stripped Massive Star: An Eruptive Mass-Loss History Encoded in Pre-Explosion Emission, a Rapidly Rising Luminous Transient, and a Broad-Lined Ic Supernova SN2018gep , 2019 .

[49]  R. Kotak,et al.  The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system , 2016, 1611.09910.

[50]  J. Bloom,et al.  An Unusually Fast-Evolving Supernova , 2009, Science.

[51]  Adam A. Miller,et al.  THE EXCEPTIONALLY LUMINOUS TYPE II-LINEAR SUPERNOVA 2008es , 2008, 0808.2193.

[52]  P. Brown,et al.  THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek , 2013, 1306.2337.

[53]  E. Berger,et al.  Where is the Engine Hiding Its Missing Energy? Constraints from a Deep X-Ray Non-detection of the Superluminous SN 2015bn , 2018, The Astrophysical Journal.

[55]  E. Ofek,et al.  Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light , 2016, 1608.01998.

[56]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[57]  S. Smartt,et al.  Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves , 2015, 1511.03740.

[58]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[59]  K. Maguire,et al.  On the nature of hydrogen-rich superluminous supernovae , 2016, 1604.01226.

[60]  K. Nomoto,et al.  Pulsational Pair-instability Model for Superluminous Supernova PTF12dam:Interaction and Radioactive Decay , 2016, 1612.01634.

[61]  C. Guidorzi,et al.  An Embedded X-Ray Source Shines through the Aspherical AT 2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients , 2018, The Astrophysical Journal.

[62]  S. B. Cenko,et al.  DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es , 2008, 0808.2812.

[63]  P. Mazzali,et al.  Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars , 2016, 1612.02882.

[64]  J. Prieto,et al.  Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy , 2017, 1708.00864.

[65]  Santiago,et al.  Type II Supernova Spectral Diversity. I. Observations, Sample Characterization, and Spectral Line Evolution , 2017, 1709.02487.

[66]  R. Nichol,et al.  Superluminous supernovae from the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[67]  I. Arcavi,et al.  New regimes in the observation of core-collapse supernovae , 2019, Nature Astronomy.

[68]  S. Smartt,et al.  ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES , 2012, 1206.4050.

[69]  K. Maguire,et al.  Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra , 2015, 1507.02501.

[70]  A. Stark,et al.  The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr , 2019, The Astrophysical Journal.

[71]  R. Chevalier,et al.  Optical Signatures of Circumstellar Interaction in Type IIP Supernovae , 2007, astro-ph/0703468.

[72]  D. Malesani,et al.  POLARIMETRY OF THE SUPERLUMINOUS SUPERNOVA LSQ14MO: NO EVIDENCE FOR SIGNIFICANT DEVIATIONS FROM SPHERICAL SYMMETRY , 2015, 1511.04522.

[73]  M. Sullivan,et al.  Superluminous supernovae from PESSTO , 2014, 1405.1325.

[74]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[75]  R. Nichol,et al.  SN 2006oz: Rise Of A Super-Luminous Supernova Observed By The SDSS-II SN Survey , 2012, 1201.5393.

[76]  P. Astier,et al.  TWO SUPERLUMINOUS SUPERNOVAE FROM THE EARLY UNIVERSE DISCOVERED BY THE SUPERNOVA LEGACY SURVEY , 2013, 1310.0470.

[77]  U. M. Noebauer,et al.  Fast evolving pair-instability supernova models: evolution, explosion, light curves , 2016, 1610.01086.

[78]  William H. Lee,et al.  The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? , 2018, Monthly Notices of the Royal Astronomical Society.

[79]  D. Kasen,et al.  THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.

[80]  N. E. Sommer,et al.  Rapidly evolving transients in the Dark Energy Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[81]  R. Kotak,et al.  Massive stars exploding in a He-rich circumstellar medium. IV. Transitional Type Ibn Supernovae , 2015, 1502.04946.

[82]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000 .

[83]  R. Chevalier,et al.  SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.

[84]  A. Fruchter,et al.  A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae , 2016, 1601.01874.

[85]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[86]  E. Berger,et al.  A Radio Source Coincident with the Superluminous Supernova PTF10hgi: Evidence for a Central Engine and an Analog of the Repeating FRB 121102? , 2019, The Astrophysical Journal.

[87]  K. Maguire,et al.  A nearby superluminous supernova with a long pre-maximum 'plateau' and strong CII features , 2018 .

[88]  Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.

[89]  E. Berger,et al.  The Type I Superluminous Supernova PS16aqv: Lightcurve Complexity and Deep Limits on Radioactive Ejecta in a Fast Event , 2018, The Astrophysical Journal.

[90]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[91]  K. Maguire,et al.  On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.

[92]  A. Gal-yam The Most Luminous Supernovae , 2018, Annual Review of Astronomy and Astrophysics.

[93]  A. M. S. Oderberg,et al.  Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies , 2012 .

[94]  E. Cappellaro,et al.  Gaia16apd – a link between fast and slowly declining type I superluminous supernovae , 2016, 1611.10207.

[95]  A. Gal-yam Luminous Supernovae , 2012, Science.

[96]  N. Yasuda,et al.  RAPIDLY RISING TRANSIENTS FROM THE SUBARU HYPER SUPRIME-CAM TRANSIENT SURVEY , 2016, 1601.03261.

[97]  R. Nichol,et al.  Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two , 2017, 1712.04535.

[98]  R. Foley,et al.  CORONAL LINES AND DUST FORMATION IN SN 2005ip: NOT THE BRIGHTEST, BUT THE HOTTEST TYPE IIn SUPERNOVA , 2008, 0809.5079.

[99]  David O. Jones,et al.  Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.

[100]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[101]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[102]  P. Brown,et al.  Swift spectra of AT2018cow: a white dwarf tidal disruption event? , 2018, Monthly Notices of the Royal Astronomical Society.

[103]  B. J. Shappee,et al.  The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient , 2018, The Astrophysical Journal.

[104]  E. Ofek,et al.  Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory , 2017, 1704.05061.

[105]  Richard Walters,et al.  RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE “.Ia” EXPLOSION , 2010, 1009.0960.

[106]  S. Gezari,et al.  RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.

[107]  K. Maguire,et al.  Observational properties of thermonuclear supernovae , 2019, Nature Astronomy.

[108]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[109]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[110]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[111]  Jeff Cooke,et al.  Superluminous supernovae at redshifts of 2.05 and 3.90 , 2012, Nature.

[112]  S. E. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[113]  K. Maguire,et al.  LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES , 2016, 1608.02994.

[114]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[115]  R. Nichol,et al.  DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang , 2017, 1707.06649.

[116]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[117]  U. N. Dame,et al.  A fast-evolving luminous transient discovered by K2/Kepler , 2018, 1804.04641.

[118]  M. Sullivan,et al.  Euclid: Superluminous supernovae in the Deep Survey , 2017, 1710.09585.