Atomic force microscopy reveals kinks in the p53 response element DNA.

[1]  J. Espinosa,et al.  Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. , 2001, Molecular cell.

[2]  C. Peterson,et al.  Chromatin remodeling enzymes: who's on first? , 2001, Current Biology.

[3]  P. Balagurumoorthy,et al.  Conformation and rigidity of DNA microcircles containing waf1 response element for p53 regulatory protein. , 2001, Journal of molecular biology.

[4]  C. Peterson,et al.  SWI/SNF chromatin remodeling requires changes in DNA topology. , 2001, Molecular cell.

[5]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[6]  V. Zhurkin,et al.  Modeling DNA deformations. , 2000, Current opinion in structural biology.

[7]  L. Tang,et al.  Determining the DNA bending angle induced by non-specific high mobility group-1 (HMG-1) proteins: a novel method. , 2000, Biochemistry.

[8]  P. Hainaut,et al.  New approaches to understanding p53 gene tumor mutation spectra. , 1999, Mutation research.

[9]  G. Striker,et al.  DNA bending due to specific p53 and p53 core domain-DNA interactions visualized by electron microscopy. , 1999, Journal of molecular biology.

[10]  Vassilis Aidinis,et al.  The RAG1 Homeodomain Recruits HMG1 and HMG2 To Facilitate Recombination Signal Sequence Binding and To Enhance the Intrinsic DNA-Bending Activity of RAG1-RAG2 , 1999, Molecular and Cellular Biology.

[11]  S. Diekmann,et al.  DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. , 1999, Biochemistry.

[12]  P. Sudarsanam,et al.  The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5 , 1999, The EMBO journal.

[13]  V. Zhurkin,et al.  p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Sarma,et al.  Structure, Motion, Interaction and Expression of Biological Macromolecules. , 1998, Journal of biomolecular structure & dynamics.

[16]  C. Prives,et al.  High mobility group protein-1 (HMG-1) is a unique activator of p53. , 1998, Genes & development.

[17]  H. Ding,et al.  Mechanisms of p53-mediated apoptosis. , 1998, Critical reviews in oncogenesis.

[18]  W. El-Deiry,et al.  Regulation of p53 downstream genes. , 1998, Seminars in cancer biology.

[19]  R. Harrington,et al.  Strained DNA is kinked by low concentrations of Zn2+. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  V. Zhurkin,et al.  Architectural Accommodation in the Complex of Four p53 DNA Binding Domain Peptides with the p21/waf1/cip1 DNA Response Element* , 1997, The Journal of Biological Chemistry.

[21]  E. Appella,et al.  DNA Bending Is Essential for the Site-specific Recognition of DNA Response Elements by the DNA Binding Domain of the Tumor Suppressor Protein p53* , 1997, The Journal of Biological Chemistry.

[22]  M. Kulesz-Martin,et al.  DNA binding specificity of proteins derived from alternatively spliced mouse p53 mRNAs. , 1997, Nucleic acids research.

[23]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[24]  Andrea Dworkin,et al.  Life and death , 1854 .

[25]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[26]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[27]  S Neidle,et al.  The high resolution crystal structure of the DNA decamer d(AGGCATGCCT). , 1996, Journal of molecular biology.

[28]  K. Kinzler,et al.  Life (and death) in a malignant tumour , 1996, Nature.

[29]  M. A. El Hassan,et al.  Structural mechanics of bent DNA. , 1996, Endeavour.

[30]  Y. Lyubchenko,et al.  Atomic force microscopy of DNA, nucleoproteins and cellular complexes: the use of functionalized substrates. , 1996, Scanning microscopy. Supplement.

[31]  A. Gronenborn,et al.  Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Oren,et al.  A functional p53-responsive intronic promoter is contained within the human mdm2 gene. , 1995, Nucleic acids research.

[33]  T. Halazonetis,et al.  The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. , 1995, The EMBO journal.

[34]  C. Bustamante,et al.  DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. , 1994, Science.

[35]  K. Kinzler,et al.  p53 tagged sites from human genomic DNA. , 1994, Human molecular genetics.

[36]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[37]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[38]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[39]  P. Friedman,et al.  The p53 protein is an unusually shaped tetramer that binds directly to DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R E Harrington,et al.  Studies of DNA bending and flexibility using gel electrophoresis , 1993, Electrophoresis.

[41]  R. Harrington DNA curving and bending in protein–DNA recognition , 1992, Molecular microbiology.

[42]  K. Kinzler,et al.  Definition of a consensus binding site for p53 , 1992, Nature Genetics.

[43]  T. Steitz,et al.  Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees , 1991, Science.

[44]  K. Kinzler,et al.  Identification of p53 as a sequence-specific DNA-binding protein , 1991, Science.

[45]  Y. Lyubchenko,et al.  DNA bending induced by Cro protein binding as demonstrated by gel electrophoresis. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R E Harrington,et al.  Sequence-dependent kinks induced in curved DNA. , 1990, Journal of biomolecular structure & dynamics.

[47]  B. Matthews,et al.  Protein-DNA conformational changes in the crystal structure of a lambda Cro-operator complex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Steitz,et al.  Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding , 1990, Quarterly Reviews of Biophysics.

[49]  E N Trifonov,et al.  Curved DNA: design, synthesis, and circularization. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[50]  V. Zhurkin,et al.  Anisotropic flexibility of DNA and the nucleosomal structure. , 1979, Nucleic acids research.