In the solvolysis of tert-butyl chloride, satisfactory ..cap alpha..-carbon-14, ..beta..-deuterium, and chlorine kinetic isotope effects (KIE) may be calculated for a productlike transition state characterized by bond orders n/sub C Cl/ = 0.2, n/sub C C/ = 1.18, and n/sub C H/ = 0.94, employing a diagonal valence force field, provided that allowance is made for hydrogen-bonded solvation of the developing chloride ion with n/sub Cl H/ approx. 0.05 (approx. 7 kcal/mole hydrogen bonds). The effect of the three solvating molecules appears to be to increase the ''effective'' mass of the incipient chloride ion and to decrease the loss of zero-point energy in going to the transition state. Reaction coordinates more complicated than a simple heterolysis of the carbon-chlorine bond appear to be unnecessary and there is no advantage in employing force fields more complex than a simple valence force field containing only diagonal elements for both the reactant and the transition state model. The structural and bonding features of the proposed transition state are in accord with earlier more qualitative conclusions concerning the polar nature and productlike character of the transition state, and provide a reasonable explanation of the kinetic and equilibrium isotope effects (EIE) for the reaction. Anmore » alternative transition state model involving weak solvent nucleophilic assistance provides reasonable calculated values for the KIE, but the EIE strongly suggest the importance of solvation of the leaving group which, together with the hyperconjugation of the ..beta.. hydrogens, provides a preferred explanation of the tert-butyl solvolysis results.« less