Monte Carlo methods for physically based volume rendering

We survey methods that utilize Monte Carlo (MC) integration to simulate light transport in scenes with participatingmedia. The goal of this course is to complement a recent Eurographics 2018 stateof-the-art report providing a broad overview of most techniques developed to date, including a few methods from neutron transport, with a focus on concepts that are most relevant to CG practitioners. The wide adoption of path-tracing algorithms in high-end realistic rendering has stimulated many diverse research initiatives aimed at efficiently rendering scenes with participatingmedia. More computational power has enabled holistic approaches that tie volumetric effects and surface scattering together and simplify authoring workflows. Methods that were previously assumed to be incompatible have been unified to allow renderers to benefit from each method’s respective strengths. Generally, investigations have shifted away from specialized solutions, e.g. for singleor multiplescattering approximations or analytical methods, towards the more versatile Monte Carlo algorithms that are currently enjoying a widespread success in many production settings. The goal of this course is to provide the audience with a deep, up-to-date understanding of key techniques for free-path sampling, transmittance estimation, and light-path construction in participating media, including those that are presently utilized in production rendering systems. We present a coherent overview of the fundamental building blocks and we contrast the various advanced methods that build on them, providing attendees with guidance for implementing existing solutions and developing new ones. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). SIGGRAPH ’18 Courses, August 12-16, 2018, Vancouver, BC, Canada © 2018 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-5809-5/18/08. https://doi.org/10.1145/3214834.3214877 CCS CONCEPTS • Computing methodologies → Computer graphics; Rendering; Ray tracing;