THE CHEMICAL COMPOSITIONS OF VERY METAL-POOR STARS HD 122563 AND HD 140283: A VIEW FROM THE INFRARED
暂无分享,去创建一个
In-Soo Yuk | Jae Sok Oh | Hye-In Lee | Daniel T. Jaffe | Soojong Pak | Gregory N. Mace | Anna Frebel | Michael D. Pavel | Kyle F. Kaplan | Christopher Sneden | G. Mace | D. Jaffe | S. Pak | C. Sneden | A. Frebel | M. Pavel | Hwihyun Kim | Chan Park | Hwihyun Kim | K. Kaplan | I. Yuk | J. Oh | Melike Afcsar | Hee-Young Oh | Hye-In Lee | M. Afşar | Chan Park | Heeyeong Oh
[1] P. Bonifacio,et al. Three-dimensional hydrodynamical CO 5 BOLD model atmospheres of red giant stars IV. Oxygen diagnostics in extremely metal-poor red giants with infrared OH lines , , 2015, 1502.06587.
[2] Chistopher Sneden,et al. A Software Package for Microcomputer Reductions of Spectroscopic Data , 1987 .
[3] C. Sneden,et al. CHEMICAL COMPOSITIONS OF THIN-DISK, HIGH-METALLICITY RED HORIZONTAL-BRANCH FIELD STARS , 2012, 1205.3659.
[4] Gary Muller,et al. Design of the Gemini near-infrared spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.
[5] J. Lawler,et al. IMPROVED Ti ii log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2013, 1309.1440.
[6] L. Wallace,et al. An atlas of the solar spectrum in the infrared from 1850 to 9000 cm-1 (1.1 to 5.4 μm), revised , 2003 .
[7] James S. A. Brooke,et al. Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH , 2015, 1503.08420.
[8] P. François,et al. NLTE determination of the aluminium abundance in a homogeneous sample of extremely metal-poor stars , 2007, 0802.1519.
[9] The r-Process-enriched Low-Metallicity Giant HD?115444 , 1999, astro-ph/9910376.
[10] Gerhard Fischer,et al. CRIRES: a high-resolution infrared spectrograph for ESO's VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.
[11] M. Couture,et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.
[12] C. Prieto,et al. FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS , 2011, 1109.4425.
[13] Stephen A. Shectman,et al. MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.
[14] T. Beers,et al. THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] ⩽ −3.5,, , 2012, 1208.3003.
[15] C. Sneden,et al. The oxygen abundance in the metal-deficient star HD 122563 , 1974 .
[16] D. Goorvitch. Infrared CO line for the X 1 Sigma(+) state , 1994 .
[17] T. Beers,et al. Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .
[18] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[19] G. Wallerstein,et al. Adundances in G Dwarf Stars. II. The High-Velocity Star 85 Pegasi. , 1959 .
[20] L. Wallace,et al. INFRARED ATLAS OF THE ARCTURUS SPECTRUM, 0.9-5.3 MICRONS , 1995 .
[21] C. Sneden. The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .
[22] Phillip J. MacQueen,et al. THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .
[23] T. Beers,et al. First stars - XIV. Sulfur abundances in extremely metal-poor stars , 2010, 1012.4358.
[24] L. Aller,et al. The Atmospheres of A-Type Subdwarfs and 95 Leonis. , 1951 .
[25] V. Hill,et al. First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.
[26] Z. Magic,et al. A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36−670839.3 , 2014, Nature.
[27] S. Shectman,et al. THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.
[28] G. Lodato,et al. Memorie della Società Astronomica Italiana , 2005 .
[29] Sulphur and zinc abundances in Galactic stars and damped Lyα systems , 2003, astro-ph/0311529.
[30] In-Soo Yuk,et al. Preliminary design of IGRINS (Immersion GRating INfrared Spectrograph) , 2010, Astronomical Telescopes + Instrumentation.
[31] K. Sorai,et al. Stellar Abundances for the Galactic Archeology (SAGA) Database — Compilation of the Characteristics of Known Extremely Metal-Poor Stars , 2008, 0806.3697.
[32] P. Morel,et al. Fundamental properties of the Population II fiducial stars HD 122563 and Gmb 1830 from CHARA interferometric observations , 2012, 1207.5954.
[33] J. Lawler,et al. IMPROVED log(gf) VALUES FOR LINES OF Ti i AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti i) , 2013 .
[34] D. Kelson,et al. A SEARCH FOR STARS OF VERY LOW METAL ABUNDANCE. VI. DETAILED ABUNDANCES OF 313 METAL-POOR STARS , 2014, 1403.6853.
[35] Chemical abundance analysis of the extremely metal-poor star he 1300+0157 , 2006, astro-ph/0612160.
[36] L. Aller,et al. Red Giants with Extreme Metal Deficiencies. , 1963 .
[37] J. W. Brault,et al. Lifetimes, transition probabilities, and level energies in Fe i , 1991 .
[38] I. Ivans,et al. Near-Ultraviolet Observations of CS 29497-030: New Constraints on Neutron-Capture Nucleosynthesis Processes , 2005, astro-ph/0505002.
[39] G. Carraro,et al. Clues on the Galactic evolution of sulphur from star clusters , 2014, 1407.0485.
[40] J. Lawler,et al. Fe I oscillator strengths for the Gaia-ESO survey , 2014, 1404.5578.
[41] E. Caffau,et al. Galactic evolution of sulphur as traced by globular clusters , 2015, 1503.02691.