THE CHEMICAL COMPOSITIONS OF VERY METAL-POOR STARS HD 122563 AND HD 140283: A VIEW FROM THE INFRARED

From high resolution (R = 45,000), high signal-to-noise (S/N > 400) spectra gathered with the Immersion Grating Infrared Spectrograph (IGRINS) in the H and K photometric bands, we have derived elemental abundances of two bright, well-known metal-poor halo stars: the red giant HD 122563 and the subgiant HD 140283. Since these stars have metallicities approaching [Fe/H] = -3, their absorption features are generally very weak. Neutral-species lines of Mg, Si, S and Ca are detectable, as well as those of the light odd-Z elements Na and Al. The derived IR-based abundances agree with those obtained from optical-wavelength spectra. For Mg and Si the abundances from the infrared transitions are improvements to those derived from shorter wavelength data. Many useful OH and CO lines can be detected in the IGRINS HD 122563 spectrum, from which derived O and C abundances are consistent to those obtained from the traditional [O I] and CH features. IGRINS high resolutions H- and K-band spectroscopy offers promising ways to determine more reliable abundances for additional metal-poor stars whose optical features are either not detectable, or too weak, or are based on lines with analytical difficulties.

[1]  P. Bonifacio,et al.  Three-dimensional hydrodynamical CO 5 BOLD model atmospheres of red giant stars IV. Oxygen diagnostics in extremely metal-poor red giants with infrared OH lines , , 2015, 1502.06587.

[2]  Chistopher Sneden,et al.  A Software Package for Microcomputer Reductions of Spectroscopic Data , 1987 .

[3]  C. Sneden,et al.  CHEMICAL COMPOSITIONS OF THIN-DISK, HIGH-METALLICITY RED HORIZONTAL-BRANCH FIELD STARS , 2012, 1205.3659.

[4]  Gary Muller,et al.  Design of the Gemini near-infrared spectrograph , 2006, SPIE Astronomical Telescopes + Instrumentation.

[5]  J. Lawler,et al.  IMPROVED Ti ii log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 , 2013, 1309.1440.

[6]  L. Wallace,et al.  An atlas of the solar spectrum in the infrared from 1850 to 9000 cm-1 (1.1 to 5.4 μm), revised , 2003 .

[7]  James S. A. Brooke,et al.  Line strengths of rovibrational and rotational transitions in the X2Π ground state of OH , 2015, 1503.08420.

[8]  P. François,et al.  NLTE determination of the aluminium abundance in a homogeneous sample of extremely metal-poor stars , 2007, 0802.1519.

[9]  The r-Process-enriched Low-Metallicity Giant HD?115444 , 1999, astro-ph/9910376.

[10]  Gerhard Fischer,et al.  CRIRES: a high-resolution infrared spectrograph for ESO's VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[11]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[12]  C. Prieto,et al.  FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS , 2011, 1109.4425.

[13]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[14]  T. Beers,et al.  THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] ⩽ −3.5,, , 2012, 1208.3003.

[15]  C. Sneden,et al.  The oxygen abundance in the metal-deficient star HD 122563 , 1974 .

[16]  D. Goorvitch Infrared CO line for the X 1 Sigma(+) state , 1994 .

[17]  T. Beers,et al.  Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .

[18]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[19]  G. Wallerstein,et al.  Adundances in G Dwarf Stars. II. The High-Velocity Star 85 Pegasi. , 1959 .

[20]  L. Wallace,et al.  INFRARED ATLAS OF THE ARCTURUS SPECTRUM, 0.9-5.3 MICRONS , 1995 .

[21]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[22]  Phillip J. MacQueen,et al.  THE HIGH-RESOLUTION CROSS-DISPERSED ECHELLE WHITE PUPIL SPECTROMETER OF THE MCDONALD OBSERVATORY 2.7-M TELESCOPE , 1995 .

[23]  T. Beers,et al.  First stars - XIV. Sulfur abundances in extremely metal-poor stars , 2010, 1012.4358.

[24]  L. Aller,et al.  The Atmospheres of A-Type Subdwarfs and 95 Leonis. , 1951 .

[25]  V. Hill,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[26]  Z. Magic,et al.  A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36−670839.3 , 2014, Nature.

[27]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[28]  G. Lodato,et al.  Memorie della Società Astronomica Italiana , 2005 .

[29]  Sulphur and zinc abundances in Galactic stars and damped Lyα systems , 2003, astro-ph/0311529.

[30]  In-Soo Yuk,et al.  Preliminary design of IGRINS (Immersion GRating INfrared Spectrograph) , 2010, Astronomical Telescopes + Instrumentation.

[31]  K. Sorai,et al.  Stellar Abundances for the Galactic Archeology (SAGA) Database — Compilation of the Characteristics of Known Extremely Metal-Poor Stars , 2008, 0806.3697.

[32]  P. Morel,et al.  Fundamental properties of the Population II fiducial stars HD 122563 and Gmb 1830 from CHARA interferometric observations , 2012, 1207.5954.

[33]  J. Lawler,et al.  IMPROVED log(gf) VALUES FOR LINES OF Ti i AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti i) , 2013 .

[34]  D. Kelson,et al.  A SEARCH FOR STARS OF VERY LOW METAL ABUNDANCE. VI. DETAILED ABUNDANCES OF 313 METAL-POOR STARS , 2014, 1403.6853.

[35]  Chemical abundance analysis of the extremely metal-poor star he 1300+0157 , 2006, astro-ph/0612160.

[36]  L. Aller,et al.  Red Giants with Extreme Metal Deficiencies. , 1963 .

[37]  J. W. Brault,et al.  Lifetimes, transition probabilities, and level energies in Fe i , 1991 .

[38]  I. Ivans,et al.  Near-Ultraviolet Observations of CS 29497-030: New Constraints on Neutron-Capture Nucleosynthesis Processes , 2005, astro-ph/0505002.

[39]  G. Carraro,et al.  Clues on the Galactic evolution of sulphur from star clusters , 2014, 1407.0485.

[40]  J. Lawler,et al.  Fe I oscillator strengths for the Gaia-ESO survey , 2014, 1404.5578.

[41]  E. Caffau,et al.  Galactic evolution of sulphur as traced by globular clusters , 2015, 1503.02691.