ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads

Antimicrobial resistance (AMR) is one of the major threats to human and animal health worldwide, yet few high-throughput tools exist to analyse and predict the resistance of a bacterial isolate from sequencing data. Here we present a new tool, ARIBA, that identifies AMR-associated genes and single nucleotide polymorphisms directly from short reads, and generates detailed and customisable output. The accuracy and advantages of ARIBA over other tools are demonstrated on three datasets from Gram-positive and Gram-negative bacteria, with ARIBA outperforming existing methods. ARIBA is available at https://github.com/sanger-pathogens/ariba.

[1]  Nabil-Fareed Alikhan,et al.  Comparison of classical multi-locus sequence typing software for next-generation sequencing data , 2017, Microbial genomics.

[2]  James Hadfield,et al.  Phandango: an interactive viewer for bacterial population genomics , 2017, bioRxiv.

[3]  Y. Grad,et al.  Use of whole-genome sequencing data to analyze 23S rRNA-mediated azithromycin resistance. , 2017, International journal of antimicrobial agents.

[4]  Christina Boucher,et al.  MEGARes: an antimicrobial resistance database for high throughput sequencing , 2016, Nucleic Acids Res..

[5]  L. Sánchez-Busó,et al.  The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. , 2016, The Journal of antimicrobial chemotherapy.

[6]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[7]  Anna G. Green,et al.  Genomic Epidemiology of Gonococcal Resistance to Extended-Spectrum Cephalosporins, Macrolides, and Fluoroquinolones in the United States, 2000–2013 , 2016, The Journal of infectious diseases.

[8]  Ole Lund,et al.  Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. , 2016, The Journal of antimicrobial chemotherapy.

[9]  N. Loman,et al.  CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community , 2016, bioRxiv.

[10]  Fangfang Xia,et al.  Antimicrobial Resistance Prediction in PATRIC and RAST , 2016, Scientific Reports.

[11]  J. O'Neill,et al.  Tackling drug-resistant infections globally: final report and recommendations , 2016 .

[12]  G. Horsman,et al.  Genomic Epidemiology and Molecular Resistance Mechanisms of Azithromycin-Resistant Neisseria gonorrhoeae in Canada from 1997 to 2014 , 2016, Journal of Clinical Microbiology.

[13]  Simon R. Harris,et al.  SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments , 2016, bioRxiv.

[14]  B. Limbago,et al.  SSTAR, a Stand-Alone Easy-To-Use Antimicrobial Resistance Gene Predictor , 2016, mSphere.

[15]  Phelim Bradley,et al.  Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis , 2015, Nature Communications.

[16]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[17]  Ulf Schaefer,et al.  An outbreak of high-level azithromycin resistant Neisseria gonorrhoeae in England , 2015, Sexually Transmitted Infections.

[18]  G. Horsman,et al.  Whole-Genome Phylogenomic Heterogeneity of Neisseria gonorrhoeae Isolates with Decreased Cephalosporin Susceptibility Collected in Canada between 1989 and 2013 , 2014, Journal of Clinical Microbiology.

[19]  Justin Zobel,et al.  SRST2: Rapid genomic surveillance for public health and hospital microbiology labs , 2014, bioRxiv.

[20]  O. Lund,et al.  In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing , 2014, Antimicrobial Agents and Chemotherapy.

[21]  Julian Parkhill,et al.  Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study , 2014, The Lancet. Infectious diseases.

[22]  J. Rolain,et al.  ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes , 2013, Antimicrobial Agents and Chemotherapy.

[23]  Torsten Seemann,et al.  Genomic Insights to Control the Emergence of Vancomycin-Resistant Enterococci , 2013, mBio.

[24]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[25]  S. Rasmussen,et al.  Identification of acquired antimicrobial resistance genes , 2012, The Journal of antimicrobial chemotherapy.

[26]  D. W. Kim,et al.  Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe , 2012, Nature Genetics.

[27]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[28]  Martin C. J. Maiden,et al.  BIGSdb: Scalable analysis of bacterial genome variation at the population level , 2010, BMC Bioinformatics.

[29]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[30]  S. Chisholm,et al.  High-Level Azithromycin Resistance Occurs in Neisseria gonorrhoeae as a Result of a Single Point Mutation in the 23S rRNA Genes , 2010, Antimicrobial Agents and Chemotherapy.

[31]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[32]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[33]  S. Bentley,et al.  Evolution of MRSA During Hospital Transmission and Intercontinental Spread , 2010, Science.

[34]  Ying Gao,et al.  Bioinformatics Applications Note Sequence Analysis Cd-hit Suite: a Web Server for Clustering and Comparing Biological Sequences , 2022 .

[35]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[36]  Thomas Mailund,et al.  Rapid Neighbour-Joining , 2008, WABI.

[37]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[38]  Michael G. Kemp,et al.  The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells , 2005, Nucleic acids research.

[39]  Jun Yu,et al.  VFDB: a reference database for bacterial virulence factors , 2004, Nucleic Acids Res..

[40]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[41]  L. Ng,et al.  Mutation in 23S rRNA Associated with Macrolide Resistance in Neisseria gonorrhoeae , 2002, Antimicrobial Agents and Chemotherapy.

[42]  D. Tribe,et al.  Multilocus Sequence Typing Scheme for Enterococcus faecium , 2002, Journal of Clinical Microbiology.

[43]  K. Ojo,et al.  Identification of a Complete dfrA14 Gene Cassette Integrated at a Secondary Site in a Resistance Plasmid of Uropathogenic Escherichia coli from Nigeria , 2002, Antimicrobial Agents and Chemotherapy.

[44]  C. Walsh,et al.  Vancomycin resistance in enterococci: reprogramming of the D-ala-D-Ala ligases in bacterial peptidoglycan biosynthesis. , 2000, Chemistry & biology.

[45]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[46]  Patrice Courvalin,et al.  Vancomycin resistance in gram-positive cocci. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.