Macrophages in atherosclerosis: a dynamic balance

[1]  P. Libby,et al.  Local proliferation dominates lesional macrophage accumulation in atherosclerosis , 2013, Nature Medicine.

[2]  Christine E. Becker,et al.  CD36 coordinates NLRP3 inflammasome activation by facilitating the intracellular nucleation from soluble to particulate ligands in sterile inflammation , 2013, Nature Immunology.

[3]  K. Moore,et al.  Hypoxia Induces Netrin-1 and Unc5b in Atherosclerotic Plaques: Mechanism for Macrophage Retention and Survival , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[4]  A. Tall,et al.  Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. , 2013, Cell metabolism.

[5]  K. Moore,et al.  Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis Dysregulation Under Proatherosclerotic Conditions , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[6]  K. Moore,et al.  Neuroimmune Guidance Cue Semaphorin 3E Is Expressed in Atherosclerotic Plaques and Regulates Macrophage Retention , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[7]  N. Mukaida,et al.  Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. , 2013, Immunity.

[8]  R. Evans,et al.  Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice[S] , 2013, Journal of Lipid Research.

[9]  M. Hristov,et al.  Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes , 2013, EMBO molecular medicine.

[10]  G. Barish,et al.  The LPS2 mutation in TRIF is atheroprotective in hyperlipidemic low density lipoprotein receptor knockout mice , 2013, Innate immunity.

[11]  R. Schreiber,et al.  Programmable nanoparticle functionalization for in vivo targeting , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  Jianchun Chen,et al.  CSF-1 signaling mediates recovery from acute kidney injury. , 2012, The Journal of clinical investigation.

[13]  L. Lind,et al.  Circulating levels of secretory- and lipoprotein-associated phospholipase A2 activities: relation to atherosclerotic plaques and future all-cause mortality. , 2012, European heart journal.

[14]  J. Stamler,et al.  Myeloid Krüppel-Like Factor 4 Deficiency Augments Atherogenesis in ApoE−/− Mice—Brief Report , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[15]  M. Monestier,et al.  Efficient Clearance of Early Apoptotic Cells by Human Macrophages Requires M2c Polarization and MerTK Induction , 2012, The Journal of Immunology.

[16]  O. Wagner,et al.  Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype , 2012, EMBO molecular medicine.

[17]  Andrew C. Li,et al.  Regulated Accumulation of Desmosterol Integrates Macrophage Lipid Metabolism and Inflammatory Responses , 2012, Cell.

[18]  S. Hida,et al.  Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. , 2012, Biochemical and biophysical research communications.

[19]  A. McMichael,et al.  Activation of Invariant NKT Cells in Early Phase of Experimental Autoimmune Encephalomyelitis Results in Differentiation of Ly6Chi Inflammatory Monocyte to M2 Macrophages and Improved Outcome , 2012, The Journal of Immunology.

[20]  S. Subramanian,et al.  Toll-Like Receptor 4 Deficiency Decreases Atherosclerosis But Does Not Protect Against Inflammation in Obese Low-Density Lipoprotein Receptor–Deficient Mice , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[21]  A. Statnikov,et al.  Regression of Atherosclerosis Is Characterized by Broad Changes in the Plaque Macrophage Transcriptome , 2012, PloS one.

[22]  Charles P. Lin,et al.  Myocardial infarction accelerates atherosclerosis , 2012, Nature.

[23]  A. Trulioff,et al.  Endogenous apolipoprotein A‐I stabilizes ATP‐binding cassette transporter A1 and modulates Toll‐like receptor 4 signaling in human macrophages , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  S. Gordon,et al.  Role of macrophage scavenger receptors in atherosclerosis. , 2012, Immunobiology.

[25]  M. Kastan,et al.  Autophagy links inflammasomes to atherosclerotic progression. , 2012, Cell metabolism.

[26]  Jennifer Martinez,et al.  Macrophage autophagy plays a protective role in advanced atherosclerosis. , 2012, Cell metabolism.

[27]  P. Tontonoz,et al.  Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR , 2012, Nature Reviews Molecular Cell Biology.

[28]  J. Gage,et al.  Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. , 2012, The Canadian journal of cardiology.

[29]  V. de Waard,et al.  Bone Marrow–Specific Deficiency of Nuclear Receptor Nur77 Enhances Atherosclerosis , 2012, Circulation research.

[30]  K. Ley,et al.  NR4A1 (Nur77) Deletion Polarizes Macrophages Toward an Inflammatory Phenotype and Increases Atherosclerosis , 2012, Circulation research.

[31]  K. Moore,et al.  The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques , 2012 .

[32]  Chaowei Wu,et al.  Statins Promote the Regression of Atherosclerosis via Activation of the CCR7-Dependent Emigration Pathway in Macrophages , 2011, PloS one.

[33]  D. Schrijvers,et al.  Autophagy in Atherosclerosis: A Potential Drug Target for Plaque Stabilization , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[34]  Moshe Levi,et al.  Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging , 2011, Journal of Lipid Research.

[35]  C. Weber,et al.  Atherosclerosis: current pathogenesis and therapeutic options , 2011, Nature Medicine.

[36]  M. Gassmann,et al.  Hypoxia Is Present in Murine Atherosclerotic Plaques and Has Multiple Adverse Effects on Macrophage Lipid Metabolism , 2011, Circulation research.

[37]  N. Leitinger,et al.  Phenotypic modulation of macrophages in response to plaque lipids , 2011, Current opinion in lipidology.

[38]  H. Kruth Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles , 2011, Current opinion in lipidology.

[39]  Daniel G. Anderson,et al.  Therapeutic siRNA silencing in inflammatory monocytes , 2011, Nature Biotechnology.

[40]  F. Geissmann,et al.  The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C− monocytes , 2011, Nature Immunology.

[41]  G. Moneta Correction for Feig et al., HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells , 2011, Proceedings of the National Academy of Sciences.

[42]  M. Hersberger,et al.  Nrf2 is essential for cholesterol crystal‐induced inflammasome activation and exacerbation of atherosclerosis , 2011, European journal of immunology.

[43]  Aaron N. Chang,et al.  Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. , 2011, The Journal of clinical investigation.

[44]  K. Clément,et al.  Krüppel-like factor 4 regulates macrophage polarization. , 2011, The Journal of clinical investigation.

[45]  F. Finkelman,et al.  Local Macrophage Proliferation, Rather than Recruitment from the Blood, Is a Signature of TH2 Inflammation , 2011, Science.

[46]  Ira Tabas,et al.  Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. , 2011, Cell metabolism.

[47]  M. Baumann,et al.  Serum Amyloid A Activates the NLRP3 Inflammasome via P2X7 Receptor and a Cathepsin B-Sensitive Pathway , 2011, The Journal of Immunology.

[48]  D. Rader,et al.  Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression. , 2011, The Journal of clinical investigation.

[49]  K. Moore,et al.  Macrophages in the Pathogenesis of Atherosclerosis , 2011, Cell.

[50]  Mohamed Amine Bouhlel,et al.  Human Atherosclerotic Plaque Alternative Macrophages Display Low Cholesterol Handling but High Phagocytosis Because of Distinct Activities of the PPAR&ggr; and LXR&agr; Pathways , 2011, Circulation research.

[51]  S. Young,et al.  Reversal of Hyperlipidemia With a Genetic Switch Favorably Affects the Content and Inflammatory State of Macrophages in Atherosclerotic Plaques , 2011, Circulation.

[52]  S. Ryter,et al.  Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. , 2011, Nature immunology.

[53]  E. Latz,et al.  The Critical Role of IL-1 Receptor-Associated Kinase 4-Mediated NF-κB Activation in Modified Low-Density Lipoprotein-Induced Inflammatory Gene Expression and Atherosclerosis , 2011, The Journal of Immunology.

[54]  G. Hansson,et al.  The immune system in atherosclerosis , 2011, Nature Immunology.

[55]  J. Tschopp,et al.  Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome , 2011, Cell Death and Disease.

[56]  Soo-Ho Choi,et al.  Oxidation-Specific Epitopes Are Danger-Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity , 2011, Circulation research.

[57]  K. Moore,et al.  Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. , 2010, Cell metabolism.

[58]  M. Fessler,et al.  Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol[S] , 2010, Journal of Lipid Research.

[59]  Michael R. Elliott,et al.  Identification of a Novel Macrophage Phenotype That Develops in Response to Atherogenic Phospholipids via Nrf2 , 2010, Circulation research.

[60]  Egil Lien,et al.  NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals , 2010, Nature.

[61]  A. Tall,et al.  ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation , 2010, Science.

[62]  A. Tall,et al.  ABCA1 and ABCG1 Protect Against Oxidative Stress–Induced Macrophage Apoptosis During Efferocytosis , 2010, Circulation research.

[63]  Oliver Soehnlein,et al.  Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile , 2010, The Journal of experimental medicine.

[64]  M. Cybulsky,et al.  Resident Intimal Dendritic Cells Accumulate Lipid and Contribute to the Initiation of Atherosclerosis , 2010, Circulation research.

[65]  A. Tall,et al.  Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[66]  Olivier Levillain,et al.  Macrophage Plasticity in Experimental Atherosclerosis , 2010, PloS one.

[67]  F. Geissmann,et al.  Monocytes in atherosclerosis: subsets and functions , 2010, Nature Reviews Cardiology.

[68]  K. Moore,et al.  CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer , 2009, Nature Immunology.

[69]  Carl Nathan,et al.  Nonresolving Inflammation , 2010, Cell.

[70]  P. Kovanen,et al.  Lipoprotein modification by secretory phospholipase A2 enzymes contributes to the initiation and progression of atherosclerosis , 2009, Current opinion in lipidology.

[71]  M. Cybulsky,et al.  GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions , 2009, The Journal of experimental medicine.

[72]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[73]  Soo-Ho Choi,et al.  Macrophages Generate Reactive Oxygen Species in Response to Minimally Oxidized Low-Density Lipoprotein: Toll-Like Receptor 4– and Spleen Tyrosine Kinase–Dependent Activation of NADPH Oxidase 2 , 2009, Circulation research.

[74]  Irving L. Weissman,et al.  CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. , 2009, Blood.

[75]  K. Moore,et al.  Loss of SR-A and CD36 Activity Reduces Atherosclerotic Lesion Complexity Without Abrogating Foam Cell Formation in Hyperlipidemic Mice , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[76]  S. Akira,et al.  Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production , 2008, Nature.

[77]  A. Tall,et al.  Increased Inflammatory Gene Expression in ABC Transporter–Deficient Macrophages: Free Cholesterol Accumulation, Increased Signaling via Toll-Like Receptors, and Neutrophil Infiltration of Atherosclerotic Lesions , 2008, Circulation.

[78]  G. Randolph Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis , 2008, Current opinion in lipidology.

[79]  M. Willingham,et al.  Increased Cellular Free Cholesterol in Macrophage-specific Abca1 Knock-out Mice Enhances Pro-inflammatory Response of Macrophages* , 2008, Journal of Biological Chemistry.

[80]  D. Schrijvers,et al.  Mertk Receptor Mutation Reduces Efferocytosis Efficiency and Promotes Apoptotic Cell Accumulation and Plaque Necrosis in Atherosclerotic Lesions of Apoe−/− Mice , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[81]  K. Rock,et al.  Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization , 2008, Nature Immunology.

[82]  P. Tontonoz,et al.  Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-gamma/delta-mediated effect that links lipid metabolism and immunity. , 2008, Molecular endocrinology.

[83]  T. Simon,et al.  Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6Chi and Ly6Clo Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice , 2008, Circulation.

[84]  M. Febbraio,et al.  Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II. , 2008, Cardiovascular research.

[85]  M. Rekhter,et al.  Genetic ablation of IRAK4 kinase activity inhibits vascular lesion formation. , 2008, Biochemical and biophysical research communications.

[86]  J. Borén,et al.  Ira Tabas , Kevin Jon Williams and Jan Borén and Therapeutic Implications Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis : Update , 2007 .

[87]  M. Cybulsky,et al.  Getting to the site of inflammation: the leukocyte adhesion cascade updated , 2007, Nature Reviews Immunology.

[88]  F. Tacke,et al.  Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. , 2007, The Journal of clinical investigation.

[89]  P. Libby,et al.  Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. , 2007, The Journal of clinical investigation.

[90]  Mason W Freeman,et al.  Scavenger receptors in atherosclerosis: beyond lipid uptake. , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[91]  Zahi A Fayad,et al.  Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. , 2006, Nano letters.

[92]  W. Jerome,et al.  Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder. , 2006, Rejuvenation research.

[93]  E. Pamer,et al.  Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2 , 2006, Nature Immunology.

[94]  J. Tardif Antioxidants: the good, the bad and the ugly. , 2006, The Canadian journal of cardiology.

[95]  F. Maxfield,et al.  Role of cholesterol and lipid organization in disease , 2005, Nature.

[96]  P. Tobias,et al.  Modulation of atherosclerosis in mice by Toll-like receptor 2. , 2005, The Journal of clinical investigation.

[97]  I. Tabas Consequences and Therapeutic Implications of Macrophage Apoptosis in Atherosclerosis: The Importance of Lesion Stage and Phagocytic Efficiency , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[98]  N. Webb,et al.  Group V Secretory Phospholipase A2-modified Low Density Lipoprotein Promotes Foam Cell Formation by a SR-A- and CD36-independent Process That Involves Cellular Proteoglycans* , 2005, Journal of Biological Chemistry.

[99]  E. Fisher,et al.  Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[100]  S. Akira,et al.  Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[101]  K. Moore,et al.  Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways , 2004, Nature Medicine.

[102]  I. Iakovidis,et al.  The road ahead. , 2004, Studies in health technology and informatics.

[103]  George Kuriakose,et al.  The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages , 2003, Nature Cell Biology.

[104]  K. Moore,et al.  Scavenger Receptors Class A-I/II and CD36 Are the Principal Receptors Responsible for the Uptake of Modified Low Density Lipoprotein Leading to Lipid Loading in Macrophages* , 2002, The Journal of Biological Chemistry.

[105]  K. Weisgraber,et al.  Hypomorphic Apolipoprotein E Mice , 2002, The Journal of Biological Chemistry.

[106]  E. Fisher,et al.  Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  E. Fisher,et al.  Elevating High-Density Lipoprotein Cholesterol in Apolipoprotein E—Deficient Mice Remodels Advanced Atherosclerotic Lesions by Decreasing Macrophage and Increasing Smooth Muscle Cell Content , 2001, Circulation.

[108]  Z. Fayad,et al.  Dramatic remodeling of advanced atherosclerotic plaques of the apolipoprotein E-deficient mouse in a novel transplantation model. , 2001, Journal of vascular surgery.

[109]  Christopher K. Glass,et al.  Atherosclerosis The Road Ahead , 2001, Cell.

[110]  R. Ross Atherosclerosis is an inflammatory disease , 1999 .

[111]  Hirofumiyasue,et al.  Circulating Levels of Secretory Type II Phospholipase A2 Predict Coronary Events in Patients with Coronary Artery Disease , 1999 .

[112]  S. Hazen,et al.  Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. , 1999, The Journal of clinical investigation.

[113]  R. Hammer,et al.  Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. , 1993, The Journal of clinical investigation.

[114]  N. Maeda,et al.  Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. , 1992, Science.

[115]  E. Rubin,et al.  Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells , 1992, Cell.

[116]  R. Gerrity,et al.  Leukocytosis in rabbits with diet-induced atherosclerosis. , 1991, Arteriosclerosis and thrombosis : a journal of vascular biology.

[117]  R. Gerrity,et al.  Enhanced monocyte progenitor cell proliferation in bone marrow of hyperlipemic swine. , 1989, The American journal of pathology.

[118]  Hermann Bondi,et al.  The good, the bad and the ugly , 1988, Nature.

[119]  Gerrity Rg,et al.  Lipid clearance from fatty streak lesions by foam cell migration. , 1980 .