Nanoarchitectonics: Advances in Nanoelectronics

[1]  R. Landauer Computation: A Fundamental Physical View , 1987 .

[2]  Konstantin K. Likharev,et al.  Single-Electron Parametron: Reversible Computation in a Discrete-State System , 1996, Science.

[3]  R. Chau Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004 .

[4]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[5]  George Georgiou,et al.  Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires , 2004, Science.

[6]  Jean-Luc Brédas,et al.  Single-electron transistor of a single organic molecule with access to several redox states , 2003, Nature.

[7]  G. Dewey,et al.  Application of high-κ gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology , 2005 .

[8]  J. Kavalieros,et al.  High-/spl kappa//metal-gate stack and its MOSFET characteristics , 2004, IEEE Electron Device Letters.

[9]  V.V. Zhirnov,et al.  New Frontiers: Self-Assembly and Nanoelectronics , 2001, Computer.

[10]  Elmar Platzgummer,et al.  Projection maskless lithography , 2004, SPIE Advanced Lithography.

[11]  K. Eberl,et al.  Physics and applications of Si/SiGe/Si resonant interband tunneling diodes , 2000 .

[12]  J. Kavalieros,et al.  Emerging silicon and nonsilicon nanoelectronic devices: opportunities and challenges for future high-performance and low-power computational applications , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[13]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[14]  James D. Meindl,et al.  Beyond Moore's Law: the interconnect era , 2004, Computing in Science & Engineering.

[15]  T. J. Walls,et al.  Quantum mechanical modeling of advanced sub-10 nm MOSFETs , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[16]  Paul D. Franzon,et al.  Nanocell logic gates for molecular computing , 2002 .

[17]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[18]  V. V. Kislov,et al.  Molecular clusters as building blocks for nanoelectronics: the first demonstration of a cluster single-electron tunnelling transistor at room temperature , 2002 .

[19]  Gary H. Bernstein,et al.  Fabrication of monolithically-integrated InAlAs/InGaAs/InP HEMTs and InAs/AlSb/GaSb resonant interband tunneling diodes , 2001 .

[20]  Chung-Yu Wu,et al.  The quantum-dot large-neighborhood cellular nonlinear network (QLN-CNN) in nanotechnology , 2001, Proceedings of the 2001 1st IEEE Conference on Nanotechnology. IEEE-NANO 2001 (Cat. No.01EX516).

[21]  J. Kavalieros,et al.  Advanced CMOS transistors in the nanotechnology era for high-performance, low-power logic applications , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[22]  Kang L. Wang Issues of nanoelectronics: a possible roadmap. , 2002, Journal of nanoscience and nanotechnology.

[23]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[24]  R. Chau,et al.  In search of "Forever," continued transistor scaling one new material at a time , 2005, IEEE Transactions on Semiconductor Manufacturing.

[25]  C. M. Sotomayor Torres,et al.  Nanoimprint lithography: challenges and prospects , 2001 .

[26]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[27]  Konstantin K. Likharev,et al.  CMOL: A New Concept for Nanoelectronics , 2005 .

[28]  Mircea R. Stan,et al.  CMOS/nano co-design for crossbar-based molecular electronic systems , 2003 .

[29]  Yang Yang,et al.  High-Performance Emerging Solid-State Memory Technologies , 2004 .

[30]  Peter M. Kogge,et al.  Problems in designing with QCAs: Layout = Timing , 2001 .

[31]  Chongwu Zhou,et al.  Multilevel memory based on molecular devices , 2004 .

[32]  C. Ozkan,et al.  Selective and controlled self-assembly of zinc oxide hollow spheres on bundles of single-walled carbon nanotube templates , 2006 .

[33]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[34]  Toshiyuki Ogawa,et al.  Emerging Memory Solutions for Graphics Applications , 1995 .

[35]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[36]  R. W. Keyes,et al.  Fundamental limits of silicon technology , 2001, Proc. IEEE.

[37]  V.V. Zhirnov,et al.  Memory technology for post CMOS era , 2005, IEEE Circuits and Devices Magazine.

[38]  J. M. D. Coey,et al.  Half-metallic ferromagnetism: Example of CrO2 (invited) , 2002 .

[39]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[40]  S. V. Sreenivasan,et al.  Distortion and overlay performance of UV step and repeat imprint lithography , 2005 .

[41]  Suman Datta,et al.  Silicon nano-transistors for logic applications , 2003 .

[42]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[43]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[44]  T. J. Walls,et al.  Nanoscale silicon MOSFETs: A theoretical study , 2003 .

[45]  William J. Dauksher,et al.  Imprint lithography for integrated circuit fabrication , 2003 .

[46]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[47]  G. Tóth,et al.  Experimental demonstration of a latch in clocked quantum-dot cellular automata , 2001 .

[48]  Zhenan Bao,et al.  Conductance of small molecular junctions. , 2002, Physical review letters.

[49]  James M. Tour,et al.  Logic and memory with nanocell circuits , 2003 .

[50]  J. A. Liddle,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .

[51]  Özgür Türel,et al.  CrossNets: possible neuromorphic networks based on nanoscale components , 2003, Int. J. Circuit Theory Appl..

[52]  George Bourianoff,et al.  The Future of Nanocomputing , 2003, Computer.

[53]  Advanced Si and SiGe strained channel NMOS and PMOS transistors with high-k/metal-gate stack , 2004, Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting.

[54]  J.E. Brewer,et al.  Emerging research logic devices , 2005, IEEE Circuits and Devices Magazine.

[55]  Han,et al.  Measurement of single electron lifetimes in a multijunction trap. , 1994, Physical review letters.

[56]  M. Johnson,et al.  Bipolar Spin Switch , 1993, Science.

[57]  Jing C. Zhou,et al.  Nanoscale Assembly of Nanowires Templated by Microtubules , 2005 .

[58]  J. E. Brewer,et al.  Extending the road beyond CMOS , 2002 .

[59]  C. Lent,et al.  Quantum-dot cellular automata: an architecture for molecular computing , 2003, International Conference on Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003..

[60]  K. L. Jensen,et al.  Field emitter arrays for plasma and microwave source applications , 1999 .

[61]  Hanchen Huang,et al.  Are surfaces elastically softer or stiffer , 2004 .

[62]  S. Datta,et al.  Silicon and III-V nanoelectronics , 2005, International Conference on Indium Phosphide and Related Materials, 2005.

[63]  E. W. Edwards,et al.  Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures , 2005, Science.

[64]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[65]  M. Ozkan,et al.  Functionally Engineered Carbon Nanotubes-Peptide Nucleic Acid Nanocomponents , 2005 .

[66]  R. Bate Quantum-Mechanical Limitations on Device Performance , 1982 .

[67]  M. Ozkan,et al.  Organic and inorganic nanoparticle hybrids. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[68]  Andreas Mayr,et al.  CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits , 2003, Annals of the New York Academy of Sciences.

[69]  S. Folling,et al.  Single-electron latching switches as nanoscale synapses , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[70]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[71]  D. Strukov,et al.  Prospects for terabit-scale nanoelectronic memories , 2004 .

[72]  L Risch The end of the CMOS roadmap—new landscape beyond , 2002 .

[73]  A. N. Korotkov,et al.  SINGLE-ELECTRON-PARAMETRON-BASED LOGIC DEVICES , 1998 .

[74]  R.W. Keyes,et al.  Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.

[75]  Israel Koren,et al.  System-level power-aware design techniques in real-time systems , 2003, Proc. IEEE.

[76]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[77]  D. Nikonov,et al.  Spin gain transistor in ferromagnetic semiconductors-the semiconductor Bloch-equations approach , 2003, IEEE Transactions on Nanotechnology.

[78]  P. Bai,et al.  A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 /spl mu/m/sup 2/ SRAM cell , 2002, Digest. International Electron Devices Meeting,.

[79]  Joy Y. Cheng,et al.  Nanostructure engineering by templated self-assembly of block copolymers , 2004, Nature materials.

[80]  D. Awschalom,et al.  Persistent sourcing of coherent spins for multifunctional semiconductor spintronics , 2001, Nature.

[81]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[82]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[83]  M. Bohr,et al.  A logic nanotechnology featuring strained-silicon , 2004, IEEE Electron Device Letters.

[84]  M. Ozkan,et al.  Nano-patterned liquid metal electrode for the synthesis of novel Prussian blue nanotubes and nanowires , 2006 .

[85]  Konstantin K. Likharev,et al.  Neuromorphic architectures for nanoelectronic circuits , 2004, Int. J. Circuit Theory Appl..

[86]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[87]  Spintronics: semiconductors, molecules and quantum information , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[88]  S. Deleonibus Devices architectures and materials for nanoCMOS at the end of the roadmap and beyond , 2004 .

[89]  Seth Copen Goldstein,et al.  Molecular electronics: from devices and interconnect to circuits and architecture , 2003, Proc. IEEE.

[90]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[91]  M. Kund,et al.  Status and outlook of emerging nonvolatile memory technologies , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[92]  A. Khitun,et al.  Cellular nonlinear network based on semiconductor tunneling structure with a self-assembled quantum dot layer , 2004, 4th IEEE Conference on Nanotechnology, 2004..