On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature
暂无分享,去创建一个
[1] Giuseppe Vitiello,et al. Fractals, coherent states and self-similarity induced noncommutative geometry , 2012, 1206.1854.
[2] Sengul Nalci,et al. Golden quantum oscillator and Binet–Fibonacci calculus , 2011, 1107.4389.
[3] L. Montagnier,et al. DNA waves and water , 2010, 1012.5166.
[4] P. Jizba,et al. Dissipation and quantization for composite systems , 2009 .
[5] Michael Martin Nieto,et al. Coherent States , 2009, Compendium of Quantum Physics.
[6] Giuseppe Vitiello,et al. Fractals and the Fock-Bargmann Representation of Coherent States , 2009, QI.
[7] Giuseppe Vitiello,et al. COHERENT STATES, FRACTALS AND BRAIN WAVES , 2009, 0906.0564.
[8] S. Liberati. Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2008 .
[9] G. Vitiello. Topological defects, fractals and the structure of quantum field theory , 2008, 0807.2164.
[10] G. Vitiello. Links. Relating different physical systems through the common QFT algebraic structure , 2006, hep-th/0610094.
[11] H. Peitgen,et al. Chaos and Fractals , 2004 .
[12] S. Sivasubramanian,et al. Quantum dissipation induced noncommutative geometry , 2003, quant-ph/0301005.
[13] P. Jizba,et al. Quantization, group contraction and zero point energy , 2002, quant-ph/0208012.
[14] P. Jizba,et al. Dissipation and quantization , 2000, hep-th/0007138.
[15] G. Hooft. Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.
[16] S. Siena,et al. Thermo field dynamics and quantum algebras , 1998, hep-th/9801031.
[17] G. Vitiello,et al. Phase Coherence in Quantum Brownian Motion , 1997, quant-ph/9707048.
[18] G. Vitiello,et al. Dissipation and Topologically Massive Gauge Theories in the Pseudo-Euclidean Plane , 1996 .
[19] D. Kusnezov,et al. Quantum Dissipation , 1995, nucl-th/9507034.
[20] S. Havlin,et al. Fractals in Science , 1995 .
[21] A. Widom,et al. Quantum Dissipation and Quantum Noise , 1995, hep-th/9502044.
[22] G. Vitiello,et al. QUANTUM GROUPS AND VON NEUMANN THEOREM , 1994, math-ph/0009035.
[23] S. Siena,et al. Quantum Groups, Coherent States, Squeezing and Lattice Quantum Mechanics , 1993, hep-th/9310132.
[24] K. Nakamura,et al. Finite temperature quantum field theory and gauge field , 1992 .
[25] M. Rasetti,et al. Squeezing and quantum groups. , 1991, Physical Review Letters.
[26] M. Rasetti,et al. SU(1,1) SQUEEZED STATES AS DAMPED OSCILLATORS , 1989 .
[27] A. Perelomov. Generalized Coherent States and Their Applications , 1986 .
[28] 長岡 洋介. H. Umezawa, H. Matsumoto and M. Tachiki: Thermo Field Dynamics and Condensed States, North-Holland, Amsterdam and New York, 1982, xvi+592ページ, 23×16cm, 35,750円. , 1983 .
[29] H. Matsumoto,et al. Thermo Field Dynamics and Condensed States , 1982 .
[30] G. Vitiello,et al. Vacuum structure for unstable particles , 1977 .
[31] H. Yuen. Two-photon coherent states of the radiation field , 1976 .
[32] G. Vitiello. Struttura e funzione : una visione ecologica integrata , 2012 .
[33] Gerard 't Hooft. A mathematical theory for deterministic quantum mechanics , 2007 .
[34] H. Godfrin,et al. Topological defects and the non-equilibrium dynamics of symmetry breaking phase transitions , 2000 .
[35] G. Vitiello,et al. Dissipation and Topologically Massive Gauge Theories in Pseudoeuclidean Plane , 1996 .
[36] S. E. Khaikin,et al. Theory of Oscillators , 1966 .