On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature

In electrodynamics there is a mutual exchange of energy and momentum between the matter field and the electromagnetic field and the total energy and momentum are conserved. For a constant magnetic field and harmonic scalar potential, electrodynamics is shown to be isomorph to a system of damped/amplified harmonic oscillators. These can be described by squeezed coherent states which in turn are isomorph to self-similar fractal structures. Under the said conditions of constant magnetic field and harmonic scalar potential, electrodynamics is thus isomorph to fractal self-similar structures and squeezed coherent states. At a quantum level, dissipation induces noncommutative geometry with the squeezing parameter playing a relevant role. Ubiquity of fractals in Nature and relevance of coherent states and electromagnetic interaction point to a unified, integrated vision of Nature.

[1]  Giuseppe Vitiello,et al.  Fractals, coherent states and self-similarity induced noncommutative geometry , 2012, 1206.1854.

[2]  Sengul Nalci,et al.  Golden quantum oscillator and Binet–Fibonacci calculus , 2011, 1107.4389.

[3]  L. Montagnier,et al.  DNA waves and water , 2010, 1012.5166.

[4]  P. Jizba,et al.  Dissipation and quantization for composite systems , 2009 .

[5]  Michael Martin Nieto,et al.  Coherent States , 2009, Compendium of Quantum Physics.

[6]  Giuseppe Vitiello,et al.  Fractals and the Fock-Bargmann Representation of Coherent States , 2009, QI.

[7]  Giuseppe Vitiello,et al.  COHERENT STATES, FRACTALS AND BRAIN WAVES , 2009, 0906.0564.

[8]  S. Liberati Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2008 .

[9]  G. Vitiello Topological defects, fractals and the structure of quantum field theory , 2008, 0807.2164.

[10]  G. Vitiello Links. Relating different physical systems through the common QFT algebraic structure , 2006, hep-th/0610094.

[11]  H. Peitgen,et al.  Chaos and Fractals , 2004 .

[12]  S. Sivasubramanian,et al.  Quantum dissipation induced noncommutative geometry , 2003, quant-ph/0301005.

[13]  P. Jizba,et al.  Quantization, group contraction and zero point energy , 2002, quant-ph/0208012.

[14]  P. Jizba,et al.  Dissipation and quantization , 2000, hep-th/0007138.

[15]  G. Hooft Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[16]  S. Siena,et al.  Thermo field dynamics and quantum algebras , 1998, hep-th/9801031.

[17]  G. Vitiello,et al.  Phase Coherence in Quantum Brownian Motion , 1997, quant-ph/9707048.

[18]  G. Vitiello,et al.  Dissipation and Topologically Massive Gauge Theories in the Pseudo-Euclidean Plane , 1996 .

[19]  D. Kusnezov,et al.  Quantum Dissipation , 1995, nucl-th/9507034.

[20]  S. Havlin,et al.  Fractals in Science , 1995 .

[21]  A. Widom,et al.  Quantum Dissipation and Quantum Noise , 1995, hep-th/9502044.

[22]  G. Vitiello,et al.  QUANTUM GROUPS AND VON NEUMANN THEOREM , 1994, math-ph/0009035.

[23]  S. Siena,et al.  Quantum Groups, Coherent States, Squeezing and Lattice Quantum Mechanics , 1993, hep-th/9310132.

[24]  K. Nakamura,et al.  Finite temperature quantum field theory and gauge field , 1992 .

[25]  M. Rasetti,et al.  Squeezing and quantum groups. , 1991, Physical Review Letters.

[26]  M. Rasetti,et al.  SU(1,1) SQUEEZED STATES AS DAMPED OSCILLATORS , 1989 .

[27]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[28]  長岡 洋介 H. Umezawa, H. Matsumoto and M. Tachiki: Thermo Field Dynamics and Condensed States, North-Holland, Amsterdam and New York, 1982, xvi+592ページ, 23×16cm, 35,750円. , 1983 .

[29]  H. Matsumoto,et al.  Thermo Field Dynamics and Condensed States , 1982 .

[30]  G. Vitiello,et al.  Vacuum structure for unstable particles , 1977 .

[31]  H. Yuen Two-photon coherent states of the radiation field , 1976 .

[32]  G. Vitiello Struttura e funzione : una visione ecologica integrata , 2012 .

[33]  Gerard 't Hooft A mathematical theory for deterministic quantum mechanics , 2007 .

[34]  H. Godfrin,et al.  Topological defects and the non-equilibrium dynamics of symmetry breaking phase transitions , 2000 .

[35]  G. Vitiello,et al.  Dissipation and Topologically Massive Gauge Theories in Pseudoeuclidean Plane , 1996 .

[36]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .