Variational Bayesian Inference : Algorithms for Sparse Gaussian Processes and Theoretical Bounds
暂无分享,去创建一个
[1] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[2] L. Csató. Gaussian processes:iterative sparse approximations , 2002 .
[3] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[4] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[5] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[6] Andre Wibisono,et al. Streaming Variational Bayes , 2013, NIPS.
[7] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[8] Edwin V. Bonilla,et al. Scalable Inference for Gaussian Process Models with Black-Box Likelihoods , 2015, NIPS.
[9] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[10] Pierre Alquier,et al. On the properties of variational approximations of Gibbs posteriors , 2015, J. Mach. Learn. Res..
[11] Daniel Hernández-Lobato,et al. Scalable Gaussian Process Classification via Expectation Propagation , 2015, AISTATS.
[12] James Hensman,et al. On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes , 2015, AISTATS.