Parameter Extraction of Photovoltaic Models Using a Dynamic Self-Adaptive and Mutual- Comparison Teaching-Learning-Based Optimization

Parameter extraction of solar cell models plays an important role in the simulation, evaluation, control, and optimization of the photovoltaic (PV) system. Although many meta-heuristic algorithms have been proposed to solve the parameter extraction, it is necessary to further improve the accuracy and reliability of these algorithms. In this paper, an optimized teaching-learning-based optimization (TLBO) is proposed, namely dynamic self-adaptive and mutual-comparison teaching-learning-based optimization (DMTLBO). DMTLBO enhances the basic TLBO by improving its teacher phase and learner phase: (i) In the teacher phase, two differentiated and personalized teaching strategies are proposed according to learners’ learning status. In these two strategies, an adaptive state transition weight factor <inline-formula> <tex-math notation="LaTeX">$\omega $ </tex-math></inline-formula> and a dynamic gap weight factor <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula> are introduced to reflect the dynamic transformation of the learners’ learning state in the actual teaching situation. (ii) In the learner phase, a new learning strategy is proposed. The learner can communicate and learn with three different learners who are randomly selected and ranked. To verify the performance of the DMTLBO algorithm, it is used to extract the parameters of different PV models, such as the single diode model, the double diode model, and three PV modules. Among these PV models, the root mean square error values between the measured data and the calculated data of DMTLBO are 9.8602E-04 ± 2.07E-17, 9.8248E-04 ± 1.53E-06, 2.4251E-03 ± 2.15E-17, 1.7298E-03 ± 5.74E-14, and 1.6601E-02 ± 4.55E-10, respectively. Compared with other optimization algorithms, the experimental results show that DMTLBO can provide better or highly competitive convergence speed and extraction accuracy. Besides, the influence of the improved teacher phase and learner phase on DMTLBO and the changing process of both weight factors <inline-formula> <tex-math notation="LaTeX">$\omega $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula> are investigated.

[1]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[2]  Zhicong Chen,et al.  Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm , 2017 .

[3]  Dani Rusirawan,et al.  Identification of Model Parameters of the Photovoltaic Solar Cells , 2014 .

[4]  Michal Pluhacek,et al.  Distance based parameter adaptation for Success-History based Differential Evolution , 2019, Swarm Evol. Comput..

[5]  J. Selvaraj,et al.  Solar cell parameters extraction using particle swarm optimization algorithm , 2013, 2013 IEEE Conference on Clean Energy and Technology (CEAT).

[6]  Aboul Ella Hassanien,et al.  A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells , 2017 .

[7]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[8]  Vivek K. Patel,et al.  A multi-objective improved teaching-learning based optimization algorithm (MO-ITLBO) , 2016, Inf. Sci..

[9]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[10]  Dongyuan Shi,et al.  Parameter extraction of solar photovoltaic models with an either-or teaching learning based algorithm , 2020 .

[11]  V. Stornelli,et al.  A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels , 2019, Energies.

[12]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[13]  Ahmed F. Zobaa,et al.  On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function , 2020 .

[14]  Prudence W. H. Wong,et al.  Parameter estimation of photovoltaic model via parallel particle swarm optimization algorithm , 2016 .

[15]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[16]  Jing Zhang,et al.  Parameter identification of solid oxide fuel cells with ranking teaching-learning based algorithm , 2018, Energy Conversion and Management.

[17]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[18]  Huiling Chen,et al.  Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models , 2020 .

[19]  E. E. van Dyk,et al.  Analysis of the effect of parasitic resistances on the performance of photovoltaic modules , 2004 .

[20]  Alain K. Tossa,et al.  A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions , 2014 .

[21]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[22]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[23]  Abdelkader Abbassi,et al.  An improved single-diode model parameters extraction at different operating conditions with a view to modeling a photovoltaic generator: A comparative study , 2017 .

[24]  Francisco Gordillo,et al.  Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm , 2019, Energy.

[25]  Ramzi Ben Messaoud Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization , 2020 .

[26]  A. Elkholy,et al.  Optimal parameters estimation and modelling of photovoltaic modules using analytical method , 2019, Heliyon.

[27]  Pierre Ele,et al.  Important notes on parameter estimation of solar photovoltaic cell , 2019, Energy Conversion and Management.

[28]  Ramzi Ben Messaoud,et al.  Extraction of uncertain parameters of double-diode model of a photovoltaic panel using Ant Lion Optimization , 2020, SN Applied Sciences.

[29]  Leandro dos Santos Coelho,et al.  An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module , 2015 .

[30]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .

[31]  Mike Duke,et al.  The numerical calculation of single-diode solar-cell modelling parameters , 2014 .

[32]  Aissa Chouder,et al.  Solar Cell Parameters Extraction of Photovoltaic Module Using NeIder-Mead Optimization , 2018, 2018 IEEE 5th International Congress on Information Science and Technology (CiSt).

[33]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[34]  Liang Gao,et al.  Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization , 2019, Energy Conversion and Management.

[35]  Yue Wang,et al.  An improved optimization technique for estimation of solar photovoltaic parameters , 2017 .

[36]  Giuseppina Ciulla,et al.  An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data , 2013 .

[37]  Sílvio Mariano,et al.  Collaborative swarm intelligence to estimate PV parameters , 2019, Energy Conversion and Management.

[38]  Erdem Cuce,et al.  An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters , 2017 .

[39]  J. M. Blanes,et al.  Geometric properties of the single-diode photovoltaic model and a new very simple method for parameters extraction , 2014 .

[40]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[41]  Andrés Tobón,et al.  Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model , 2020 .

[42]  R. Venkata Rao,et al.  An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems , 2012, Sci. Iran..

[44]  Alex S. Fukunaga,et al.  Success-history based parameter adaptation for Differential Evolution , 2013, 2013 IEEE Congress on Evolutionary Computation.

[45]  Vivek Patel,et al.  An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems , 2012 .

[46]  R. Venkata Rao,et al.  Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems , 2016 .

[47]  Salah Kamel,et al.  Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–Learning-Based Optimization Algorithm , 2020, Iranian Journal of Science and Technology, Transactions of Electrical Engineering.

[48]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[49]  F. Javier Toledo,et al.  Two-Step Linear Least-Squares Method For Photovoltaic Single-Diode Model Parameters Extraction , 2018, IEEE Transactions on Industrial Electronics.

[50]  M. Louzazni,et al.  An analytical mathematical modeling to extract the parameters of solar cell from implicit equation to explicit form , 2015 .

[51]  Kashif Ishaque,et al.  Parameter extraction of photovoltaic cell using differential evolution method , 2011, 2011 IEEE Applied Power Electronics Colloquium (IAPEC).

[52]  Rachida Abounacer,et al.  Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover , 2019 .

[53]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[54]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[55]  Dhiaa Halboot Muhsen,et al.  Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm , 2015 .

[56]  R. Venkata Rao,et al.  Teaching Learning Based Optimization Algorithm: And Its Engineering Applications , 2015 .

[57]  Gajanan Waghmare,et al.  Comments on "A note on teaching-learning-based optimization algorithm" , 2013, Inf. Sci..

[58]  Jing Zhang,et al.  Winner-leading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solar photovoltaic models , 2020 .

[59]  R.A.P. Franco,et al.  Analytical method for extraction of the single-diode model parameters for photovoltaic panels from datasheet data , 2018 .

[60]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[61]  Srihari Gude,et al.  Parameter extraction of photovoltaic cell using an improved cuckoo search optimization , 2020 .

[62]  Ponnuthurai Nagaratnam Suganthan,et al.  Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm , 2019, Renewable Energy.

[63]  Xuesong Yan,et al.  Parameter estimation of photovoltaic models with memetic adaptive differential evolution , 2019, Solar Energy.

[64]  Roberto Cárdenas,et al.  Experimental Parameter Extraction in the Single-Diode Photovoltaic Model via a Reduced-Space Search , 2017, IEEE Transactions on Industrial Electronics.

[65]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[66]  Yu He,et al.  Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm , 2018, Energy Conversion and Management.

[67]  Gang Yao,et al.  Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm , 2018, Solar Energy.

[68]  Feng Zou,et al.  Teaching-learning-based optimization with learning experience of other learners and its application , 2015, Appl. Soft Comput..

[69]  Hui Du,et al.  A Linear Identification of Diode Models from Single I-V Characteristics of PV Panels , 2015, IEEE Trans. Ind. Electron..

[70]  Manu Vardhan,et al.  An adaptive inertia weight teaching-learning-based optimization algorithm and its applications , 2020 .

[71]  Antonino Laudani,et al.  High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms , 2014 .

[72]  Ramzi Ben Messaoud Extraction of uncertain parameters of single and double diode model of a photovoltaic panel using Salp Swarm algorithm , 2020 .

[73]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[74]  S. Karmalkar,et al.  A Physically Based Explicit $J$ – $V$ Model of a Solar Cell for Simple Design Calculations , 2008, IEEE Electron Device Letters.

[75]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[76]  Shu-xian Lun,et al.  An improved explicit I–V model of a solar cell based on symbolic function and manufacturer’s datasheet , 2014 .

[77]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[78]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[79]  Mojtaba Alizadeh,et al.  Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization Algorithm , 2019, Solar Energy.