Comparing face patch systems in macaques and humans

Face recognition is of central importance for primate social behavior. In both humans and macaques, the visual analysis of faces is supported by a set of specialized face areas. The precise organization of these areas and the correspondence between individual macaque and human face-selective areas are debated. Here, we examined the organization of face-selective regions across the temporal lobe in a large number of macaque and human subjects. Macaques showed 6 regions of face-selective cortex arranged in a stereotypical pattern along the temporal lobe. Human subjects showed, in addition to 3 reported face areas (the occipital, fusiform, and superior temporal sulcus face areas), a face-selective area located anterior to the fusiform face area, in the anterior collateral sulcus. These results suggest a closer anatomical correspondence between macaque and human face-processing systems than previously realized.

[1]  C. Darwin The Expression of the Emotions in Man and Animals , .

[2]  R. Yin Looking at Upside-down Faces , 1969 .

[3]  A. J. Mistlin,et al.  Visual neurones responsive to faces , 1987, Trends in Neurosciences.

[4]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[5]  G. Striedter,et al.  Biological hierarchies and the concept of homology. , 1991, Brain, behavior and evolution.

[6]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[7]  B R Payne,et al.  Evidence for visual cortical area homologs in cat and macaque monkey. , 1993, Cerebral cortex.

[8]  T. Allison,et al.  Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. , 1994, Cerebral cortex.

[9]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[10]  Keiji Tanaka,et al.  Optical Imaging of Functional Organization in the Monkey Inferotemporal Cortex , 1996, Science.

[11]  G. Winocur,et al.  What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition , 1997, Journal of Cognitive Neuroscience.

[12]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[13]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[14]  T. Allison,et al.  Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. , 1999, Cerebral cortex.

[15]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[16]  N. Jablonski,et al.  Primate evolution — in and out of Africa , 1999, Current Biology.

[17]  Matthew H. Davis,et al.  Susceptibility-Induced Loss of Signal: Comparing PET and fMRI on a Semantic Task , 2000, NeuroImage.

[18]  J. Finsterbusch,et al.  Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. , 2000, Journal of magnetic resonance.

[19]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[20]  J. Haxby,et al.  Distinct representations of eye gaze and identity in the distributed human neural system for face perception , 2000, Nature Neuroscience.

[21]  C. Nelson The Development and Neural Bases of Face Recognition , 2001 .

[22]  T. Schormann,et al.  Activation Reduction in Anterior Temporal Cortices during Repeated Recognition of Faces of Personal Acquaintances , 2001, NeuroImage.

[23]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[24]  Anders M. Dale,et al.  Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla , 2002, NeuroImage.

[25]  R Todd Constable,et al.  Image distortion correction in EPI: Comparison of field mapping with point spread function mapping , 2002, Magnetic resonance in medicine.

[26]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[27]  Matthew Brett,et al.  An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images , 2003, NeuroImage.

[28]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[29]  Detlef Wegener,et al.  The Influence of Sustained Selective Attention on Stimulus Selectivity in Macaque Visual Area MT , 2004, The Journal of Neuroscience.

[30]  Hisao Nishijo,et al.  Neuronal correlates of face identification in the monkey anterior temporal cortical areas. , 2004, Journal of neurophysiology.

[31]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[32]  A. Treves,et al.  Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain , 2005, Nature Neuroscience.

[33]  Galia Avidan,et al.  Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 1. Behavioral Findings , 2005, Journal of Cognitive Neuroscience.

[34]  N. Kanwisher,et al.  The Neural Basis of the Behavioral Face-Inversion Effect , 2005, Current Biology.

[35]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Hisao Nishijo,et al.  Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. , 2005, Journal of neurophysiology.

[37]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[38]  Rebecca F. Schwarzlose,et al.  Separate face and body selectivity on the fusiform gyrus. , 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Rafael Malach,et al.  Detailed Exploration of Face-related Processing in Congenital Prosopagnosia: 2. Functional Neuroimaging Findings , 2005, Journal of Cognitive Neuroscience.

[40]  M. Pritz,et al.  Comparisons and Homology in Adult and Developing Vertebrate Central Nervous Systems , 2005, Brain, Behavior and Evolution.

[41]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[42]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[43]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[44]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[45]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[46]  Galia Avidan,et al.  Structural imaging reveals anatomical alterations in inferotemporal cortex in congenital prosopagnosia. , 2007, Cerebral cortex.

[47]  G. Yovel,et al.  TMS Evidence for the Involvement of the Right Occipital Face Area in Early Face Processing , 2007, Current Biology.

[48]  Leslie G. Ungerleider,et al.  Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex , 2008, Proceedings of the National Academy of Sciences.

[49]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[50]  Nikos K. Logothetis,et al.  fMRI of the temporal lobe of the awake monkey at 7 T , 2008, NeuroImage.