Influence of layout design and on-wafer heatspreaders on the thermal behavior of fully-isolated bipolar transistors: Part I - Static analysis

Abstract The impact of layout parameters on the steady-state thermal behavior of bipolar junction transistors (BJTs) with full dielectric isolation is extensively analyzed by accurate DC measurements and 3-D numerical simulations. The influence of the aspect ratio of the emitter stripe, as well as the consequences of device scaling, are investigated from a thermal viewpoint. Furthermore, the beneficial effect of implementing aluminum nitride (AlN) thin-film heatspreaders is examined. It is shown that the silicon area surrounding the heat source, as well as the distance to high-thermal-conductivity regions, can have a significant impact on the thermal behavior. A recently proposed scaling rule for the thermal resistance – fully compatible with advanced transistor models – is successfully applied to a series of test BJT structures provided that a simple parameter optimization is carried out. Based on this, some generally applicable guidelines are given to effectively downscale fully-isolated bipolar transistors without significantly worsening the thermal issues.

[1]  V. d'Alessandro,et al.  A back-wafer contacted silicon-on-glass integrated bipolar process. Part I. The conflict electrical versus thermal isolation , 2004, IEEE Transactions on Electron Devices.

[2]  V. d'Alessandro,et al.  Theory of electrothermal behavior of bipolar transistors: Part I -single-finger devices , 2005, IEEE Transactions on Electron Devices.

[3]  P. Palestri,et al.  Compact modeling of thermal resistance in bipolar transistors on bulk and SOI substrates , 2002 .

[4]  V. d'Alessandro,et al.  Analysis of the Bipolar Current Mirror Including Electrothermal and Avalanche Effects , 2009, IEEE Transactions on Electron Devices.

[5]  D. T. Zweidinger,et al.  The effects of BJT self-heating on circuit behavior , 1993 .

[6]  Niccolò Rinaldi,et al.  Advances in electrothermal simulation of solid-state devices and circuits using commercial CAD tools , 2007 .

[7]  V. d’Alessandro,et al.  Thermal transient behavior of silicon-on-glass BJTs , 2009, EuroSimE 2009 - 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems.

[8]  J.W. Slotboom,et al.  Electrothermal limitations on the current density of high-frequency bipolar transistors , 2004, IEEE Transactions on Electron Devices.

[9]  Fadhel M. Ghannouchi,et al.  Thermal memory effects modeling and compensation in RF power amplifiers and predistortion linearizers , 2003 .

[10]  J.N. Burghartz,et al.  A Referenced Geometry Based Configuration Scalable Mextram Model for Bipolar Transistors , 2006, 2006 IEEE International Behavioral Modeling and Simulation Workshop.

[11]  V. Szekely,et al.  Identification of RC networks by deconvolution: chances and limits , 1998 .

[12]  H. C. Wu,et al.  A Scalable Mextram Model for Advanced Bipolar Circuit Design , 2007 .

[13]  V. d'Alessandro,et al.  Extraction and modeling of self-heating and mutual thermal coupling impedance of bipolar transistors , 2004, IEEE Journal of Solid-State Circuits.

[14]  V. d'Alessandro,et al.  Restabilizing mechanisms after the onset of thermal instability in bipolar transistors , 2006, IEEE Transactions on Electron Devices.

[15]  Roberto Menozzi,et al.  Dynamic thermal characterization and modeling of packaged AlGaAs/GaAs HBTs , 2000 .

[16]  Tianbing Chen,et al.  Footprint design optimization in SiGe BiCMOS SOI technology , 2008, 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[17]  G. Freeman,et al.  Structure optimization of trench-isolated SiGe HBTs for simultaneous improvements in thermal and electrical performances , 2005, IEEE Transactions on Electron Devices.

[18]  Robert Fox,et al.  Thermal impedance extraction for bipolar transistors , 1996 .

[19]  S. P. Marsh,et al.  Direct extraction technique to derive the junction temperature of HBT's under high self-heating bias conditions , 2000 .

[20]  Wen-Chau Liu,et al.  Measurement of junction temperature of an AlGaAs/GaAs heterojunction bipolar transistor operating at large power densities , 1995 .

[21]  Noel Y. A. Shammas,et al.  A simple method for evaluating the transient thermal response of semiconductor devices , 2002, Microelectron. Reliab..

[22]  Robert Fox,et al.  A physics-based dynamic thermal impedance model for vertical bipolar transistors on SOI substrates , 1999 .

[23]  E. Zanoni,et al.  A simple method for the thermal resistance measurement of AlGaAs/GaAs heterojunction bipolar transistors , 1998 .

[24]  A. Hefner,et al.  Thermal component models for electro-thermal network simulations , 1993 .

[25]  J.M. Nebus,et al.  Analysis of low frequency memory and influence on solid state HPA intermodulation characteristics , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[26]  Niccolò Rinaldi,et al.  Small-signal operation of semiconductor devices including self-heating, with application to thermal characterization and instability analysis , 2001 .

[27]  Z. Bencic,et al.  Identification Of Thermal Equivalent - Circuit Parameters For Semiconductors , 1990, [Proceedings] 1990 IEEE Workshop on Computers in Power Electronics.

[28]  V. Szekely,et al.  On the representation of infinite-length distributed RC one-ports , 1991 .

[29]  V. d'Alessandro,et al.  Influence of Concurrent Electrothermal and Avalanche Effects on the Safe Operating Area of Multifinger Bipolar Transistors , 2009, IEEE Transactions on Electron Devices.

[30]  D. Blackburn,et al.  Transient Thermal Response Measurements of Power Transistors , 1975 .

[31]  R. H. Winkler Thermal properties of high-power transistors , 1967 .

[32]  A. Gupta,et al.  CW measurement of HBT thermal resistance , 1992 .

[33]  V. d'Alessandro,et al.  Theory of electrothermal behavior of bipolar transistors: part III-impact ionization , 2006, IEEE Transactions on Electron Devices.

[34]  Michael Reisch,et al.  Self-heating in BJT circuit parameter extraction , 1992 .

[35]  Niccolò Rinaldi,et al.  Analytical modeling and numerical simulations of the thermal behavior of trench-isolated bipolar transistors on SOI substrates , 2008 .

[36]  V. d'Alessandro,et al.  Evaluating the self-heating thermal resistance of bipolar transistors by DC measurements: A critical review and update , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[37]  L. Nanver,et al.  Aluminum nitride for heatspreading in RF IC’s , 2008 .

[38]  P. Ersland,et al.  A new method to extract HBT thermal resistance and its temperature and power dependence , 2005, IEEE Transactions on Device and Materials Reliability.

[39]  V. d'Alessandro,et al.  A back-wafer contacted silicon-on-glass integrated bipolar process. Part II. A novel analysis of thermal breakdown , 2004, IEEE Transactions on Electron Devices.

[40]  James F. Shackelford,et al.  The CRC Materials Science And Engineering Handbook , 1991 .

[41]  J. Zarebski,et al.  A method of the BJT transient thermal impedance measurement with double junction calibration , 1995, Proceedings of 1995 IEEE/CPMT 11th Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).

[42]  Cong Huang,et al.  Improved RF Devices for Future Adaptive Wireless Systems Using Two-Sided Contacting and AlN Cooling , 2009, IEEE Journal of Solid-State Circuits.

[43]  E. S. Schlig,et al.  Thermal properties of very fast transistors , 1970 .

[44]  P. R. Bryant,et al.  Multiple equilibrium points and their significance in the second breakdown of bipolar transistors , 1981 .

[45]  A. Santarelli,et al.  A simple technique for measuring the thermal impedance and the thermal resistance of HBTs , 2005, European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005.