Convergence-confinement approach for designing tunnel face reinforcement by horizontal bolting

The ground reinforcement by bolting is a technique in strong development. Bringing a perennial supplement of resistance to the ground, this technique permits to use poor grounds in a sensitive environment. It can be particularly, used for the reinforcement of tunnel faces. The full numerical simulation of such works remains a heavy and expensive process, notably in terms of geometrical complexity and various scale levels. During the preliminary project stage, it appears necessary to have simplified models, making possible to simply appreciate the effectiveness of the reinforcement. The existing simplified methods being not well adapted for the optimal conception of these reinforcement systems, a new method based on the convergence confinement approach is proposed and tested in this paper.

[1]  Patrick de Buhan,et al.  Numerical simulation of bolt‐supported tunnels by means of a multiphase model conceived as an improved homogenization procedure , 2008 .

[2]  Alejandro Pozo,et al.  A numerical approach , 2011 .

[3]  Helmut Schweiger,et al.  FE-analysis of reinfoced tunnel face , 2004 .

[4]  Daniel Dias,et al.  Three-dimensional face stability analysis of circular tunnels by numerical simulations , 2008 .

[5]  Hideto Mashimo,et al.  CENTRIFUGE MODEL TEST OF TUNNEL FACE REINFORCEMENT BY BOLTING , 2003 .

[6]  Georg Anagnostou,et al.  The dimensioning of tunnel face reinforcement , 2007 .

[7]  Oh-Yeob Kwon,et al.  Model testing for pipe-reinforced tunnel heading in a granular soil , 2008 .

[8]  Daniele Peila A theoretical study of reinforcement influence on the stability of a tunnel face , 1994 .

[9]  Georg Anagnostou,et al.  Face stability conditions with earth-pressure-balanced shields , 1996 .

[10]  Samir Maghous,et al.  A numerical approach for design of bolt-supported tunnels regarded as homogenized structures , 2009 .

[11]  Daniel Dias,et al.  Impact of constitutive models on the numerical analysis of underground constructions , 2008 .

[12]  Chung-Sik Yoo,et al.  Deformation behaviour of tunnel face reinforced with longitudinal pipes—laboratory and numerical investigation , 2003 .

[13]  Helmut Schweiger,et al.  Fe-analysis of reinforced tunnel face , 2004 .

[14]  E. Leca,et al.  Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material , 1990 .

[15]  D Dias,et al.  Extrusion analysis of a bolt-reinforced tunnel face with finite ground-bolt bond strength , 2004 .

[16]  Daniel Dias,et al.  Convergenceconfinement analysis of a bolt-supported tunnel using the homogenization method , 2006 .

[17]  Daniel Dias,et al.  Extrusion movements of a tunnel head reinforced by finite length bolts—a closed-form solution using homogenization approach , 2000 .

[18]  Daniele Peila,et al.  Face reinforcement in deep tunnels , 2004 .

[19]  Daniel Dias Renforcement du front de taille des tunnels par boulonnage : étude numérique et application à un cas réel en site urbain , 1999 .

[20]  Richard Kastner,et al.  Modélisation numérique de l'apport du renforcement par boulonnage du front de taille des tunnels , 2005 .

[21]  R. Kastner,et al.  Sols renforcés par Boulonnage—Etude numérique et application au front de taille d'un tunnel profond , 2002 .

[22]  Abdul-Hamid Soubra,et al.  Face Stability Analysis of Circular Tunnels Driven by a Pressurized Shield , 2010 .

[23]  Giovanni Battista Barla,et al.  Discussion on the Full Face Method , 2004 .