Improving alpha matting and motion blurred foreground estimation

We present a new method for separating motion blurred foreground objects from their background given a single image. Previous techniques focused on estimating alpha mattes for separating sharp, non-moving foreground objects from fairly homogeneous background. In those cases the only pixels which are ambiguous are those which exhibit fractional pixel occupancy. In this paper, we address the problem of alpha matte and foreground estimation of motion blurred objects. We show, that explicit modeling of the object motion facilitates the estimation and improves the quality of the estimated alpha mattes. In addition, we improve foreground extraction of motion blurred objects with a new regularization term. This task is particularly difficult in smeared out regions, where the background shimmers through. Both synthetic and real-world examples illustrate the merit of our approach.

[1]  Wojciech Matusik,et al.  Practical, real-time studio matting using dual imagers , 2006, EGSR '06.

[2]  Wojciech Matusik,et al.  Natural video matting using camera arrays , 2006, SIGGRAPH '06.

[3]  Wei Xiong,et al.  Rotational Motion Deblurring of a Rigid Object from a Single Image , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Shree K. Nayar,et al.  Motion-based motion deblurring , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Dani Lischinski,et al.  Spectral Matting , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Carsten Rother,et al.  Improving Color Modeling for Alpha Matting , 2008, BMVC.

[7]  Jue Wang,et al.  A perceptually motivated online benchmark for image matting , 2009, CVPR.

[8]  Stephen Lin,et al.  Image/video deblurring using a hybrid camera , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Yi Xu,et al.  Coded exposure deblurring: Optimized codes for PSF estimation and invertibility , 2009, CVPR.

[10]  Frédo Durand,et al.  Defocus video matting , 2005, SIGGRAPH 2005.

[11]  Stephen Lin,et al.  Correction of Spatially Varying Image and Video Motion Blur Using a Hybrid Camera , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Bernhard Schölkopf,et al.  Efficient filter flow for space-variant multiframe blind deconvolution , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Bernhard Schölkopf,et al.  Fast removal of non-uniform camera shake , 2011, 2011 International Conference on Computer Vision.

[14]  Sung Yong Shin,et al.  Coded exposure imaging for projective motion deblurring , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Michael F. Cohen,et al.  Optimized Color Sampling for Robust Matting , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Dani Lischinski,et al.  A Closed-Form Solution to Natural Image Matting , 2008 .

[17]  Michael S. Brown,et al.  Motion Regularization for Matting Motion Blurred Objects , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[19]  David Salesin,et al.  A Bayesian approach to digital matting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[20]  Ying Wu,et al.  Removing partial blur in a single image , 2009, CVPR.

[21]  Jiaya Jia,et al.  Poisson matting , 2004, SIGGRAPH 2004.

[22]  Stefan Harmeling,et al.  Automatic foreground-background refocusing , 2011, 2011 18th IEEE International Conference on Image Processing.

[23]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.