Suppression of Spontaneous Chromosomal Rearrangements by S Phase Checkpoint Functions in Saccharomyces cerevisiae

[1]  Patrick J. Lau,et al.  Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants. , 2000, Molecular cell.

[2]  G. Lucchini,et al.  The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. , 2000, Genes & development.

[3]  Kunihiro Matsumoto,et al.  Rfc5, in Cooperation with Rad24, Controls DNA Damage Checkpoints throughout the Cell Cycle inSaccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[4]  W. Heyer,et al.  DNA Repair Protein Rad55 Is a Terminal Substrate of the DNA Damage Checkpoints , 2000, Molecular and Cellular Biology.

[5]  T. Petes,et al.  The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. , 2000, Genetics.

[6]  M. Gatei,et al.  ATM-dependent phosphorylation of nibrin in response to radiation exposure , 2000, Nature Genetics.

[7]  E. Gilson,et al.  Cell cycle restriction of telomere elongation , 2000, Current Biology.

[8]  Bo Xu,et al.  ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway , 2000, Nature.

[9]  B. Michel Replication fork arrest and DNA recombination. , 2000, Trends in biochemical sciences.

[10]  T. Petes,et al.  Involvement of the Checkpoint Protein Mec1p in Silencing of Gene Expression at Telomeres in Saccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[11]  D. Baltimore,et al.  ATR disruption leads to chromosomal fragmentation and early embryonic lethality. , 2000, Genes & development.

[12]  S. T. Kim,et al.  Substrate Specificities and Identification of Putative Substrates of ATM Kinase Family Members* , 1999, The Journal of Biological Chemistry.

[13]  K. Isselbacher,et al.  Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. , 1999, Science.

[14]  D. Gottschling,et al.  Telomerase-Mediated Telomere Addition In Vivo Requires DNA Primase and DNA Polymerases α and δ , 1999, Cell.

[15]  T. Stankovic,et al.  The DNA Double-Strand Break Repair Gene hMRE11 Is Mutated in Individuals with an Ataxia-Telangiectasia-like Disorder , 1999, Cell.

[16]  H. Wang,et al.  Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. , 1999, Science.

[17]  W. Coleman,et al.  The role of genomic instability in human carcinogenesis. , 1999, Anticancer research.

[18]  Patrick J. Lau,et al.  Saccharomyces cerevisiae pol30(Proliferating Cell Nuclear Antigen) Mutations Impair Replication Fidelity and Mismatch Repair , 1999, Molecular and Cellular Biology.

[19]  A. Ashworth,et al.  Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification , 1999, Current Biology.

[20]  J. Murray,et al.  DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p , 1999, Current Biology.

[21]  R. Kolodner,et al.  Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants , 1999, Nature Genetics.

[22]  T. Petes,et al.  Interactions of TLC1 (Which Encodes the RNA Subunit of Telomerase), TEL1, and MEC1 in Regulating Telomere Length in the Yeast Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[23]  Stephen S. Taylor,et al.  Chromosome segregation: Dual control ensures fidelity , 1999, Current Biology.

[24]  C. Wang,et al.  Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. , 1999, Science.

[25]  Phang-lang Chen,et al.  The Nijmegen Breakage Syndrome Protein Is Essential for Mre11 Phosphorylation upon DNA Damage* , 1999, The Journal of Biological Chemistry.

[26]  T. Weinert,et al.  RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast , 1999, The EMBO journal.

[27]  Thomas Ried,et al.  Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation , 1999, Nature Genetics.

[28]  M. Speicher,et al.  Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  D. J. Clarke,et al.  The Pds1 anaphase inhibitor and Mec1 kinase define distinct checkpoints coupling S phase with mitosis in budding yeast , 1999, Current Biology.

[30]  H. Wang,et al.  DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Bodmer,et al.  Genetic pathways in colorectal and other cancers. , 1999, European journal of cancer.

[32]  A. Amon The spindle checkpoint. , 1999, Current opinion in genetics & development.

[33]  E. Gilson,et al.  Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions , 1999, Nature Genetics.

[34]  G. Marsischky,et al.  Eukaryotic DNA mismatch repair. , 1999, Current opinion in genetics & development.

[35]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[36]  J. Jiricny Replication errors: cha(lle)nging the genome , 1998, The EMBO journal.

[37]  J. Diffley,et al.  A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication , 1998, Nature.

[38]  K. Shirahige,et al.  Regulation of DNA-replication origins during cell-cycle progression , 1998, Nature.

[39]  J. Vialard,et al.  The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1‐dependent hyperphosphorylation and interacts with Rad53 after DNA damage , 1998, The EMBO journal.

[40]  S. Elledge,et al.  Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. , 1998, Genes & development.

[41]  T. Weinert DNA Damage and Checkpoint Pathways Molecular Anatomy and Interactions with Repair , 1998, Cell.

[42]  R Rothstein,et al.  A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. , 1998, Molecular cell.

[43]  J. Haber,et al.  Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage , 1998, Cell.

[44]  R. Kolodner,et al.  Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. , 1998, Molecular cell.

[45]  Matthias Platzer,et al.  Nibrin, a Novel DNA Double-Strand Break Repair Protein, Is Mutated in Nijmegen Breakage Syndrome , 1998, Cell.

[46]  John R Yates,et al.  The hMre11/hRad50 Protein Complex and Nijmegen Breakage Syndrome: Linkage of Double-Strand Break Repair to the Cellular DNA Damage Response , 1998, Cell.

[47]  T. Weinert DNA damage checkpoints update: getting molecular. , 1998, Current opinion in genetics & development.

[48]  S. Jackson,et al.  Components of the Ku‐dependent non‐homologous end‐joining pathway are involved in telomeric length maintenance and telomeric silencing , 1998, The EMBO journal.

[49]  J. Eyfjörd,et al.  BRCA2 and p53 mutations in primary breast cancer in relation to genetic instability. , 1998, Cancer research.

[50]  B. Ponder,et al.  Involvement of Brca2 in DNA repair. , 1998, Molecular cell.

[51]  K. Matsumoto,et al.  Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway , 1997, Molecular and cellular biology.

[52]  B. Nelms,et al.  hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks , 1997, Molecular and cellular biology.

[53]  G. Eichele,et al.  Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2 , 1997, Nature.

[54]  Amanda G Paulovich,et al.  When Checkpoints Fail , 1997, Cell.

[55]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[56]  R. Kolodner,et al.  A Novel Mutation Avoidance Mechanism Dependent on S. cerevisiae RAD27 Is Distinct from DNA Mismatch Repair , 1997, Cell.

[57]  P. Hieter,et al.  The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  W F Bodmer,et al.  The mutation rate and cancer. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Stephen J. Elledge,et al.  Cell Cycle Checkpoints: Preventing an Identity Crisis , 1996, Science.

[60]  A. Giaccia,et al.  The DNA damage response in DNA-dependent protein kinase-deficient SCID mouse cells: replication protein A hyperphosphorylation and p53 induction. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Haber,et al.  Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Lucchini,et al.  Yeast pip3/mec3 mutants fail to delay entry into S phase and to slow DNA replication in response to DNA damage, and they define a functional link between Mec3 and DNA primase , 1996, Molecular and cellular biology.

[63]  R. Kolodner,et al.  Biochemistry and genetics of eukaryotic mismatch repair. , 1996, Genes & development.

[64]  V. Guacci,et al.  Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae , 1996, The Journal of cell biology.

[65]  D. Stern,et al.  Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. , 1996, Genes & development.

[66]  S. Elledge,et al.  Regulation of RAD53 by the ATM-Like Kinases MEC1 and TEL1 in Yeast Cell Cycle Checkpoint Pathways , 1996, Science.

[67]  B. Ponder,et al.  The genetics of cancer , 1995 .

[68]  S. Leem,et al.  Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Burke,et al.  Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae , 1995, Molecular and cellular biology.

[70]  A. Murray,et al.  Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast , 1995, The Journal of cell biology.

[71]  J. Gassenhuber,et al.  TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene , 1995, Cell.

[72]  F. Collins,et al.  TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1 , 1995, Cell.

[73]  A. Kuzminov Collapse and repair of replication forks in Escherichia coli , 1995, Molecular microbiology.

[74]  J. Goldman,et al.  Characterization of genomic BCR‐ABL breakpoints in chronic myeloid leukaemia by PCR , 1995, British journal of haematology.

[75]  S. Elledge,et al.  DNA polymerase ϵ links the DNA replication machinery to the S phase checkpoint , 1995, Cell.

[76]  B. Roberts,et al.  The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. , 1994, Molecular and cellular biology.

[77]  P. Philippsen,et al.  New heterologous modules for classical or PCR‐based gene disruptions in Saccharomyces cerevisiae , 1994, Yeast.

[78]  A. Murray,et al.  Cell cycle checkpoints. , 1994, Current opinion in cell biology.

[79]  D. Gottschling,et al.  TLC1: template RNA component of Saccharomyces cerevisiae telomerase. , 1994, Science.

[80]  S. Elledge,et al.  The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. , 1994, Genes & development.

[81]  T. Baker,et al.  Complete transposition requires four active monomers in the mu transposase tetramer. , 1994, Genes & development.

[82]  H. Ogawa,et al.  An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. , 1994, Nucleic acids research.

[83]  L. Hartwell,et al.  Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. , 1994, Genes & development.

[84]  S. Elledge,et al.  DUN1 encodes a protein kinase that controls the DNA damage response in yeast , 1993, Cell.

[85]  Leland Hartwell,et al.  Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells , 1992, Cell.

[86]  M. Dante,et al.  Multifunctional yeast high-copy-number shuttle vectors. , 1992, Gene.

[87]  B. Roberts,et al.  S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function , 1991, Cell.

[88]  L. Loeb,et al.  Mutator phenotype may be required for multistage carcinogenesis. , 1991, Cancer research.

[89]  T. Dryja,et al.  Short, direct repeats at the breakpoints of deletions of the retinoblastoma gene. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R. D. Gietz,et al.  New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. , 1988, Gene.

[91]  T. Petes,et al.  Identification of yeast mutants with altered telomere structure. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[92]  R. W. Hamming,et al.  On the distribution of numbers , 1970, Bell Syst. Tech. J..

[93]  R. Firth Function , 1955, Yearbook of Anthropology.

[94]  R. Kolodner,et al.  SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination , 2001, Nature Genetics.

[95]  S. Mori,et al.  Characterization of a Saccharomyces cerevisiae homologue of Schizosaccharomyces pombe Chk1 involved in DNA-damage-induced M-phase arrest , 2000, Molecular and General Genetics MGG.

[96]  K. Khanna,et al.  ATM: the protein encoded by the gene mutated in the radiosensitive syndrome ataxia-telangiectasia. , 1999, International journal of radiation biology.

[97]  T. Petes,et al.  Interactions of TLC 1 ( Which Encodes the RNA Subunit of Telomerase ) , TEL 1 , and MEC 1 in Regulating Telomere Length in the Yeast Saccharomyces cerevisiae , 1999 .

[98]  Guo-Min Li,et al.  The role of mismatch repair in DNA damage-induced apoptosis. , 1999, Oncology research.

[99]  I. Hickson,et al.  Genetic disorders associated with cancer predisposition and genomic instability. , 1999, Progress in nucleic acid research and molecular biology.

[100]  Y. Shiloh,et al.  Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. , 1997, Annual review of genetics.

[101]  G. Meijer,et al.  Comparative genomic hybridization: a new tool in cancer pathology. , 1996, Human pathology.

[102]  J. Yokota,et al.  Breakpoint junction of interstitial homozygous deletion at chromosome 2q33 in a small cell lung carcinoma. , 1996, DNA research : an international journal for rapid publication of reports on genes and genomes.

[103]  B. Ponder,et al.  Genetics and cancer : a second look , 1995 .

[104]  L. Hartwell Defects in a Cell Cycle Checkpoint May Be Responsible for the Genomic lnstability of Cancer Cells Minireview , 1992 .