Two implementations of fractional-order relaxation oscillators

This work proposes general formulas for designing two different topologies of fractional-order relaxation oscillators. One topology contains an Operational Amplifier and the other one relies on an Operational Trans-Resistance Amplifier. The design procedure hinges on the general fractional-order natural and step responses of RC , which is proved in this work depending on Mittag Leffler function. The proposed topologies can be controlled to generate symmetrical and non-symmetrical square wave signals. They also benefit from the employment of fractional-order capacitors (FOCs), which makes it possible to obtain higher frequencies using simple components. Furthermore, these topologies are verified through numerical solutions, circuit simulations, and experimental implementations. This encourages the authors to build circuit emulators for the FOC, which is achieved by applying the Foster-I synthesizing technique to the Matsuda’s approximation of $$s^\alpha$$ s α .

[1]  Mohammed F. Tolba,et al.  FPGA Implementation of the Fractional Order Integrator/Differentiator: Two Approaches and Applications , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  B. Maundy,et al.  On a multivibrator that employs a fractional capacitor , 2009 .

[3]  Lobna A. Said,et al.  Three Fractional-Order-Capacitors-Based Oscillators with Controllable Phase and Frequency , 2017, J. Circuits Syst. Comput..

[4]  Mohammed F. Tolba,et al.  Synchronization and FPGA realization of fractional-order Izhikevich neuron model , 2019, Microelectron. J..

[5]  Ahmed S. Elwakil,et al.  A low frequency oscillator using a super-capacitor , 2016 .

[6]  Yu-Kang Lo,et al.  Squarewave generators employing OTRAs , 2005 .

[7]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[8]  P. J. Duffett-Smith Synthesis of lumped element, distributed, and planar filters: Helszajn J., 1990, McGraw-Hill, U.K., £40 (hb) , 1990 .

[9]  Francesco Mainardi,et al.  The Classical Mittag-Leffler Function , 2020, Springer Monographs in Mathematics.

[10]  Dalia Yousri,et al.  Biologically Inspired Optimization Algorithms for Fractional-Order Bioimpedance Models Parameters Extraction , 2018 .

[11]  Roberto Garrappa,et al.  Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..

[12]  Costas Psychalinos,et al.  Practical Design and Evaluation of Fractional-Order Oscillator Using Differential Voltage Current Conveyors , 2016, Circuits Syst. Signal Process..

[13]  Todd J. Freeborn,et al.  A Survey of Fractional-Order Circuit Models for Biology and Biomedicine , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[14]  Ahmed G. Radwan,et al.  All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different Approximation Techniques , 2019, Circuits Syst. Signal Process..

[15]  Rudolf Hilfer,et al.  Computation of the generalized Mittag-Leffler function and its inverse in the complex plane , 2006 .

[16]  Ahmed G. Radwan,et al.  On the Approximation of Fractional-Order Circuit Design , 2018 .

[17]  Mariam Faied,et al.  Charging and discharging RCα circuit under Riemann-Liouville and Caputo fractional derivatives , 2016, 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).

[18]  Costas Psychalinos,et al.  New analog implementation technique for fractional-order controller: A DC motor control , 2017 .

[19]  R. Gorenflo,et al.  The Two-Parametric Mittag-Leffler Function , 2014 .

[20]  Lu Liu,et al.  A review and evaluation of numerical tools for fractional calculus and fractional order controls , 2015, Int. J. Control.

[21]  Ahmed G. Radwan,et al.  On the Approximations of CFOA-Based Fractional-Order Inverse Filters , 2020, Circuits Syst. Signal Process..

[22]  Hironori A. Fujii,et al.  H(infinity) optimized wave-absorbing control - Analytical and experimental results , 1993 .

[23]  Ahmed M. Soliman,et al.  Generalized two-port network based fractional order filters , 2019, AEU - International Journal of Electronics and Communications.

[24]  Ahmed M. Soliman,et al.  Survey on Two-Port Network-Based Fractional-Order Oscillators , 2018 .

[25]  Ahmed Gomaa Radwan,et al.  Comparison between three approximation methods on oscillator circuits , 2018, Microelectron. J..

[26]  Ahmed G. Radwan,et al.  Fractional-Order Relaxation Oscillators Based on Op-Amp and OTRA , 2018, 2018 30th International Conference on Microelectronics (ICM).

[27]  Lu Liu,et al.  A review and evaluation of numerical tools for fractional calculus and fractional order control , 2015, ArXiv.

[28]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.