Preference inference with general additive value models and holistic pair-wise statements

Additive multi-attribute value models and additive utility models with discrete outcome sets are widely applied in both descriptive and normative decision analysis. Their non-parametric application allows preference inference by analyzing sets of general additive value functions compatible with the observed or elicited holistic pair-wise preference statements. In this paper, we provide necessary and sufficient conditions for the preference inference based on a single preference statement, and sufficient conditions for the inference based on multiple preference statements. In our computational experiments all inferences could be made with these conditions. Moreover, our analysis suggests that the non-parametric analyses of general additive value models are unlikely to be useful by themselves for decision support in contexts where the decision maker preferences are elicited in the form of holistic pair-wise statements.

[1]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[2]  Roman Słowiński,et al.  RUTA: a framework for assessing and selecting additive value functions on the basis of rank related requirements , 2013 .

[3]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[4]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[5]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria ranking and choice , 2012, Eur. J. Oper. Res..

[6]  Rudolf Vetschera,et al.  Parameters of social preference functions: measurement and external validity , 2013 .

[7]  Milosz Kadzinski,et al.  Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..

[8]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..

[9]  S. Greco,et al.  Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making , 2013 .

[10]  S. Greco,et al.  Extreme ranking analysis in robust ordinal regression , 2012 .

[11]  Milosz Kadzinski,et al.  Stochastic ordinal regression for multiple criteria sorting problems , 2013, Decis. Support Syst..

[12]  Milosz Kadzinski,et al.  Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..

[13]  Milosz Kadzinski,et al.  ELECTREGKMS: Robust ordinal regression for outranking methods , 2011, Eur. J. Oper. Res..

[14]  S. Greco,et al.  Multiple Criteria Hierarchy Process with ELECTRE and PROMETHEE , 2013 .

[15]  Milosz Kadzinski,et al.  Selection of a representative set of parameters for robust ordinal regression outranking methods , 2012, Comput. Oper. Res..

[16]  Milosz Kadzinski,et al.  Robust ordinal regression in preference learning and ranking , 2013, Machine Learning.

[17]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.