A max-plus primal space fundamental solution for a class of differential Riccati equations

A class of differential Riccati equations (DREs) is considered for which the evolution of any solution can be identified with the propagation of a value function of a corresponding optimal control problem arising in $${\mathscr {L}_2}$$L2-gain analysis. By exploiting the semigroup properties inherited from the attendant dynamic programming principle, a max-plus primal space fundamental solution semigroup of max-plus linear max-plus integral operators is developed that encapsulates all such value function propagations. Using this semigroup, a one-parameter fundamental solution semigroup of matrices is constructed for the aforementioned class of DREs. It is demonstrated that this semigroup can be used to compute particular solutions of these DREs, and to characterize finite escape times (should they exist) in a simple way.

[1]  William M. McEneaney,et al.  A max-plus based fundamental solution for a class of infinite dimensional Riccati equations , 2011, IEEE Conference on Decision and Control and European Control Conference.

[2]  B. Anderson,et al.  A first prin-ciples solution to the nonsingular H control problem , 1991 .

[3]  William M. McEneaney,et al.  Max-plus methods for nonlinear control and estimation , 2005 .

[4]  T. Sasagawa,et al.  On the finite escape phenomena for matrix Riccati equations , 1982 .

[5]  Stephen P. Banks,et al.  Existence of Solutions of Riccati Differential Equations , 2012 .

[6]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[7]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[8]  S. Gaubert,et al.  Set coverings and invertibility of functional Galois connections , 2004, math/0403441.

[9]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[10]  Jimmie D. Lawson,et al.  The Symplectic Semigroup and Riccati Differential Equations , 2006 .

[11]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[12]  Huan Zhang,et al.  Max-plus fundamental solution semigroups for optimal control problems , 2015, SIAM Conf. on Control and its Applications.

[13]  Edward J. Davison,et al.  The numerical solution of the matrix Riccati differential equation , 1973 .

[14]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[15]  G. Litvinov,et al.  Idempotent Functional Analysis: An Algebraic Approach , 2000, math/0009128.

[16]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[17]  Peter M. Dower,et al.  A max-plus based fundamental solution for a class of discrete time linear regulator problems ☆ , 2013, 1306.5060.

[18]  Kiyotsugu Takaba,et al.  A characterization of solutions of the discrete-time algebraic Riccati equation based on quadratic difference forms , 2006 .

[19]  William M. McEneaney,et al.  A Max-plus Dual Space Fundamental Solution for a Class of Operator Differential Riccati Equations , 2014, SIAM J. Control. Optim..

[20]  William M. McEneaney,et al.  A fundamental solution for an infinite dimensional two-point boundary value problem via the principle of stationary action , 2013, 2013 Australian Control Conference.

[21]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems, 2nd Edition , 2007, Systems and control.

[22]  C. Kenney,et al.  Numerical integration of the differential matrix Riccati equation , 1985 .

[23]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[24]  Huan Zhang,et al.  Max-plus fundamental solution semigroups for a class of difference Riccati equations , 2014, Autom..

[25]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[26]  William M. McEneaney,et al.  A Max-Plus-Based Algorithm for a Hamilton--Jacobi--Bellman Equation of Nonlinear Filtering , 2000, SIAM J. Control. Optim..

[27]  William M. McEneaney,et al.  A max-plus method for optimal control of a diffusion equation , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[28]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[29]  J. Quadrat,et al.  Duality and separation theorems in idempotent semimodules , 2002, math/0212294.

[30]  William M. McEneaney,et al.  A new fundamental solution for differential Riccati equations arising in control , 2008, Autom..

[31]  Joseph J. Winkin,et al.  Asymptotic behaviour of the solution of the projection Riccati differential equation , 1996, IEEE Trans. Autom. Control..

[32]  William M. McEneaney,et al.  The Principle of Least Action and Fundamental Solutions of Mass-Spring and N-Body Two-Point Boundary Value Problems , 2015, SIAM J. Control. Optim..

[33]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.