25 YEARS OF IIF TIME SERIES FORECASTING

[1]  J. Boylan,et al.  The accuracy of intermittent demand estimates , 2005 .

[2]  Gael M. Martin,et al.  Bayesian predictions of low count time series , 2005 .

[3]  Juan Romo,et al.  Bootstrap prediction intervals for power-transformed time series , 2005 .

[4]  J. J. Reeves Bootstrap prediction intervals for ARCH models , 2005 .

[5]  Anne B. Koehler,et al.  Comments on damped seasonal factors and decisions by potential users , 2004 .

[6]  Benoit Quenneville,et al.  Implementation issues on shrinkage estimators for seasonal factors within the X-11 seasonal adjustment method , 2004 .

[7]  David A. Bessler,et al.  Forecasting performance of multivariate time series models with full and reduced rank: An empirical examination , 2004 .

[8]  Keith Ord,et al.  Shrinking: When and how? , 2004 .

[9]  Brendan McCabe,et al.  Forecasting discrete valued low count time series , 2004 .

[10]  T. Willemain,et al.  A new approach to forecasting intermittent demand for service parts inventories , 2004 .

[11]  David F. Hendry,et al.  Non-Parametric Direct Multi-Step Estimation for Forecasting Economic Processes , 2004 .

[12]  Michael P. Clements,et al.  Forecasting economic and financial time-series with non-linear models , 2004 .

[13]  Jan G. De Gooijer,et al.  Forecasting threshold cointegrated systems , 2004 .

[14]  Philip Hans Franses,et al.  Forecasting unemployment using an autoregression with censored latent effects parameters , 2004 .

[15]  Michael D. Bradley,et al.  Forecasting with a nonlinear dynamic model of stock returns and industrial production , 2004 .

[16]  Christian M. Dahl,et al.  Flexible regression models and relative forecast performance , 2004 .

[17]  Emanuela Marrocu,et al.  THE PERFORMANCE OF SETAR MODELS: A REGIME CONDITIONAL EVALUATION OF POINT, INTERVAL AND DENSITY FORECASTS , 2004 .

[18]  Hui Zou,et al.  Combining time series models for forecasting , 2004, International Journal of Forecasting.

[19]  James W. Taylor Exponential smoothing with a damped multiplicative trend , 2003 .

[20]  Benoit Quenneville,et al.  A note on Musgrave asymmetrical trend-cycle filters , 2003 .

[21]  Jae H. Kim Forecasting autoregressive time series with bias-corrected parameter estimators , 2003 .

[22]  K. Man,et al.  Long memory time series and short term forecasts , 2003 .

[23]  In-Bong Kang,et al.  Multi-period forecasting using different models for different horizons: an application to U.S. economic time series data , 2003 .

[24]  Donald Poskitt,et al.  On the specification of cointegrated autoregressive moving-average forecasting systems , 2003 .

[25]  S. F. Witt,et al.  Univariate versus multivariate time series forecasting: an application to international tourism demand , 2003 .

[26]  Rob J Hyndman,et al.  Unmasking the Theta Method , 2003 .

[27]  Yongil Jeon,et al.  A time-distance criterion for evaluating forecasting models , 2003 .

[28]  Massimiliano Giuseppe Marcellino,et al.  Forecasting Emu Macroeconomic Variables , 2002 .

[29]  Michael P. Clements,et al.  Evaluating multivariate forecast densities: a comparison of two approaches , 2002 .

[30]  Rob J Hyndman,et al.  A state space framework for automatic forecasting using exponential smoothing methods , 2002 .

[31]  Nalini Ravishanker,et al.  Bayesian prediction for vector ARFIMA processes , 2002 .

[32]  Rob J Hyndman,et al.  Prediction Intervals for Exponential Smoothing State Space Models , 2001 .

[33]  Kenneth F. Wallis,et al.  Chi-Squared Tests of Interval and Density Forecasts, and the Bank of England's Fan Charts , 2001, SSRN Electronic Journal.

[34]  Ryan Sullivan,et al.  Forecast Evaluation with Shared Data Sets , 2001 .

[35]  Mattias Villani,et al.  Bayesian prediction with cointegrated vector autoregressions , 2001 .

[36]  D. Bailin,et al.  The State of the Art , 2001 .

[37]  Nicholas Sarantis,et al.  Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence , 2001 .

[38]  J. Ord,et al.  A New Look at Models For Exponential Smoothing , 2001 .

[39]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[40]  James D. Hamilton A Parametric Approach to Flexible Nonlinear Inference , 2001 .

[41]  Michael P. Clements,et al.  Bootstrapping prediction intervals for autoregressive models , 2001 .

[42]  Helmut Herwartz,et al.  Investigating the JPY/DEM-rate: arbitrage opportunities and a case for asymmetry , 2001 .

[43]  Anne B. Koehler,et al.  Forecasting models and prediction intervals for the multiplicative Holt-Winters method , 2001 .

[44]  Rob J Hyndman,et al.  Theory & Methods: Non‐Gaussian Conditional Linear AR(1) Models , 2000 .

[45]  K. Nikolopoulos,et al.  The theta model: a decomposition approach to forecasting , 2000 .

[46]  J. Keith Ord,et al.  Automatic neural network modeling for univariate time series , 2000 .

[47]  Guy Melard,et al.  Automatic ARIMA modeling including interventions, using time series expert software , 2000 .

[48]  Spyros Makridakis,et al.  The M3-Competition: results, conclusions and implications , 2000 .

[49]  Walter Enders,et al.  Estimating non-linear ARMA models using Fourier coefficients , 2000 .

[50]  Kenneth F. Wallis,et al.  Density Forecasting: A Survey , 2000 .

[51]  Qiwei Yao,et al.  Conditional Minimum Volume Predictive Regions for Stochastic Processes , 2000 .

[52]  Jan G. De Gooijer,et al.  Nonparametric conditional predictive regions for time series , 2000 .

[53]  H. V. Dijk,et al.  Combined forecasts from linear and nonlinear time series models , 1999 .

[54]  P. Goodwin,et al.  On the asymmetry of the symmetric MAPE , 1999 .

[55]  Jae H. Kim Asymptotic and bootstrap prediction regions for vector autoregression , 1999 .

[56]  Julián Andrada-Félix,et al.  Exchange-rate forecasts with simultaneous nearest-neighbour methods: evidence from the EMS , 1999 .

[57]  Derek W. Bunn,et al.  Comparison of seasonal estimation methods in multi-item short-term forecasting , 1999 .

[58]  Abdol S. Soofi,et al.  Nonlinear deterministic forecasting of daily dollar exchange rates , 1999 .

[59]  Derek W. Bunn,et al.  Investigating improvements in the accuracy of prediction intervals for combinations of forecasts: A simulation study , 1999 .

[60]  Daniel W. Williams,et al.  Level-adjusted exponential smoothing for modeling planned discontinuities1 , 1999 .

[61]  Juan Romo,et al.  Effects of parameter estimation on prediction densities: a bootstrap approach , 1999 .

[62]  P. Franses,et al.  Additive outliers, GARCH and forecasting volatility , 1999 .

[63]  K. Wallis Asymmetric density forecasts of inflation and the Bank of England's fan chart , 1999, National Institute Economic Review.

[64]  Prasad V. Bidarkota The comparative forecast performance of univariate and multivariate models: an application to real interest rate forecasting , 1998 .

[65]  Matteo Grigoletto,et al.  Bootstrap prediction intervals for autoregressions: some alternatives , 1998 .

[66]  Jeffrey E. Jarrett,et al.  Improving forecasting for telemarketing centers by ARIMA modeling with intervention , 1998 .

[67]  Derek W. Bunn,et al.  The persistence of specification problems in the distribution of combined forecast errors , 1998 .

[68]  Philip Hans Franses,et al.  A model selection strategy for time series with increasing seasonal variation , 1998 .

[69]  Robert Fildes,et al.  Generalising about univariate forecasting methods: Further empirical evidence , 1998 .

[70]  R. Lawton How should additive Holt–Winters estimates be corrected? , 1998 .

[71]  Walter Enders,et al.  Threshold-autoregressive, median-unbiased, and cointegration tests of purchasing power parity , 1998 .

[72]  J. Stock,et al.  A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series , 1998 .

[73]  Peter E. Kennedy,et al.  Combining Qualitative Forecasts Using Logit , 1998 .

[74]  J. Ord,et al.  Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models , 1997 .

[75]  Norman R. Swanson,et al.  Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models , 1997 .

[76]  Phoebus J. Dhrymes,et al.  Structural VAR, Marma and Open Economy Models , 1997 .

[77]  Philip Hans Franses,et al.  Mean Shifts, Unit Roots and Forecasting Seasonal Time Series , 1997 .

[78]  Hans-Eggert Reimers,et al.  Forecasting of seasonal cointegrated processes , 1997 .

[79]  Michael P. Clements,et al.  An empirical study of seasonal unit roots in forecasting , 1997 .

[80]  A. M. Robert Taylor,et al.  On the practical problems of computing seasonal unit root tests , 1997 .

[81]  J. M. Wells Modelling seasonal patterns and long-run trends in U.S. time series , 1997 .

[82]  Alfonso Novales,et al.  Forecasting with periodic models A comparison with time invariant coefficient models , 1997 .

[83]  Maxwell L. King,et al.  Forecasting international quarterly tourist flows using error-correction and time-series models , 1997 .

[84]  J. Ramsay,et al.  Functional Data Analysis , 1997 .

[85]  Mariano J. Valderrama,et al.  A principal component approach to dynamic regression models , 1997 .

[86]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[87]  Francesco Lisi,et al.  Is a random walk the best exchange rate predictor , 1997 .

[88]  Chunhang Chen,et al.  Robustness properties of some forecasting methods for seasonal time series: A Monte Carlo study☆ , 1997 .

[89]  W. E. Watt,et al.  Nested threshold autoregressive (NeTAR) models , 1997 .

[90]  Philip Hans Franses,et al.  A periodic long memory model for quarterly UK inflation , 1997 .

[91]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[92]  Yufei Yuan,et al.  Neural network forecasting of quarterly accounting earnings , 1996 .

[93]  Adrian Pagan,et al.  Seasonal Integration and the Evolving Seasonals Model , 1996 .

[94]  Stephen P. Curram,et al.  Forecasting consumers' expenditure: A comparison between econometric and neural network models , 1996 .

[95]  Leonard J. Tashman,et al.  The use of protocols to select exponential smoothing procedures: A reconsideration of forecasting competitions , 1996 .

[96]  G. L. Shoesmith,et al.  Multiple cointegrating vectors, error correction, and forecasting with Litterman's model , 1995 .

[97]  Scott P. Simkins Forecasting with vector autoregressive (VAR) models subject to business cycle restrictions , 1995 .

[98]  C. Granger,et al.  Modelling Nonlinear Economic Relationships , 1995 .

[99]  Kerry Patterson,et al.  Forecasting the final vintage of real personal disposable income: A state space approach , 1995 .

[100]  Allan Timmermann,et al.  On the optimality of adaptive expectations: Muth revisited , 1995 .

[101]  Ludger Hentschel All in the family Nesting symmetric and asymmetric GARCH models , 1995 .

[102]  Danny Pfeffermann,et al.  Estimation of the variances of X-11 ARIMA seasonally adjusted estimators for a multiplicative decomposition and heteroscedastic variances , 1995 .

[103]  Jeremy P. Smith,et al.  Forecasting costs incurred from unit differencing fractionally integrated processes , 1994 .

[104]  T. Willemain,et al.  Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method , 1994 .

[105]  Víctor M. Guerrero,et al.  Restricted forecasts using exponential smoothing techniques , 1994 .

[106]  Wilpen L. Gorr,et al.  Comparative study of artificial neural network and statistical models for predicting student grade point averages , 1994 .

[107]  Robyn M. Dawes,et al.  The past and the future of forecasting research , 1994 .

[108]  Marcus O'Connor,et al.  Artificial neural network models for forecasting and decision making , 1994 .

[109]  Philip Hans Franses,et al.  Periodic integration in quarterly UK macroeconomic variables , 1993 .

[110]  D. Bunn,et al.  Using group seasonal indices in multi-item short-term forecasting , 1993 .

[111]  Matthew J. Liberatore,et al.  Seasonal exponential smoothing with damped trends: An application for production planning , 1993 .

[112]  Lon-Mu Liu,et al.  Dynamic structural analysis and forecasting of residential electricity consumption , 1993 .

[113]  Spyros Makridakis,et al.  Accuracy measures: theoretical and practical concerns☆ , 1993 .

[114]  B. Ray Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model , 1993 .

[115]  Everette S. Gardner,et al.  Forecasting the failure of component parts in computer systems: A case study , 1993 .

[116]  Luiz Koodi Hotta,et al.  The effect of additive outliers on the estimates from aggregated and disaggregated ARIMA models , 1993 .

[117]  Enrique Alba,et al.  Constrained forecasting in autoregressive time series models: A Bayesian analysis , 1993 .

[118]  Sune Karlsson,et al.  Forecasting the Swedish unemployment rate VAR vs. transfer function modelling , 1993 .

[119]  R. Fildes Forecasting structural time series models and the kalman filter: Andrew Harvey, 1989, (Cambridge University Press), 554 pp., ISBN 0-521-32196-4 , 1992 .

[120]  P Pflaumer,et al.  Forecasting U.S. population totals with the Box-Jenkins approach. , 1992, International journal of forecasting.

[121]  J. Gooijer,et al.  Some recent developments in non-linear time series modelling, testing, and forecasting☆ , 1992 .

[122]  Fred Collopy,et al.  Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations , 1992 .

[123]  Rob J. Hyndman,et al.  On continuous-time threshold autoregression☆ , 1992 .

[124]  Gary L. Shoesmith Non-cointegration and causality: Implications for VAR modeling , 1992 .

[125]  Sevket I. Gunter,et al.  An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts , 1992 .

[126]  Fred L. Collopy,et al.  Error Measures for Generalizing About Forecasting Methods: Empirical Comparisons , 1992 .

[127]  Chris Chatfield,et al.  A commentary on error measures , 1992 .

[128]  Robert Fildes,et al.  The evaluation of extrapolative forecasting methods , 1992 .

[129]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[130]  Jan G. De Gooijer,et al.  On the cumulated multi-step-ahead predictions of vector autoregressive moving average processes , 1992 .

[131]  Robert L. Winkler,et al.  The effect of nonstationarity on combined forecasts , 1992 .

[132]  Patrick A. Thompson,et al.  Evaluation of the M-competition forecasts via log mean squared error ratio , 1991 .

[133]  Wen Lea Pearn,et al.  Assessing the statistical characteristics of the mean absolute error or forecasting , 1991 .

[134]  Leonard J. Tashman,et al.  Automatic forecasting software: A survey and evaluation☆ , 1991 .

[135]  J. Keith Ord,et al.  Automatic forecasting using explanatory variables: A comparative study , 1991 .

[136]  James P. LeSage,et al.  Using interindustry input-output relations as a Bayesian prior in employment forecasting models , 1991 .

[137]  Anne B. Koehler,et al.  On confusing lead time demand with h-period-ahead forecasts , 1991 .

[138]  Lon-Mu Liu,et al.  Forecasting residential consumption of natural gas using monthly and quarterly time series , 1991 .

[139]  C. Chatfield,et al.  Prediction intervals for multiplicative Holt-Winters , 1991 .

[140]  LeRoy F. Simmons,et al.  Time-series decomposition using the sinusoidal model , 1990 .

[141]  Jose Juan Carreno,et al.  A modification of time series forecasting methods for handling announced price increases , 1990 .

[142]  Anne B. Koehler,et al.  An inappropriate prediction interval , 1990 .

[143]  Francis X. Diebold,et al.  The use of prior information in forecast combination , 1990 .

[144]  Denise R. Osborn,et al.  A survey of seasonality in UK macroeconomic variables , 1990 .

[145]  Stefan Mittnik,et al.  Macroeconomic forecasting experience with balanced state space models , 1990 .

[146]  Michael J. Artis,et al.  BVAR forecasts for the G-7 , 1990 .

[147]  Blyth C. Archibald Parameter space of the Holt-Winters' model , 1990 .

[148]  Ralph D. Snyder,et al.  Structural time series models in inventory control , 1990 .

[149]  Patrick A. Thompson,et al.  An MSE statistic for comparing forecast accuracy across series , 1990 .

[150]  Everette S. Gardner,et al.  Model Identification in Exponential Smoothing , 1988 .

[151]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[152]  GuptaSunil,et al.  Combination of Forecasts , 1987 .

[153]  Gaetan Libert,et al.  The M‐competition with a fully automatic box–jenkins procedure , 1984 .

[154]  E. McKenzie General exponential smoothing and the equivalent arma process , 1984 .

[155]  Per-Olov Edlund,et al.  Identification of the multi‐input box‐Jenkins transfer function model , 1984 .

[156]  T. Riise,et al.  Theory and practice of multivariate arma forecasting , 1984 .

[157]  C. Granger,et al.  Improved methods of combining forecasts , 1984 .

[158]  Essam Mahmoud,et al.  Accuracy in forecasting: A survey , 1984 .

[159]  David M. Rocke,et al.  Municipal budget forecasting with multivariate ARMA models , 1983 .

[160]  Sergio G. Koreisha,et al.  Causal implications: The linkage between time series and econometric modelling , 1983 .

[161]  Pierre A. Cholette Prior Information and ARIMA Forecasting , 1982 .

[162]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[163]  S. A. Roberts A General Class of Holt-Winters Type Forecasting Models , 1982 .

[164]  Robert L. Winkler,et al.  The accuracy of extrapolation (time series) methods: Results of a forecasting competition , 1982 .

[165]  Estela Bee Dagum,et al.  Revisions of time varying seasonal filters , 1982 .

[166]  Spyros Makridakis,et al.  Forecasting: Methods and Applications , 1979 .

[167]  G. Jenkins,et al.  Time Series Analysis: Forecasting and Control , 1978 .

[168]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[169]  M. J. R. Healy,et al.  Smoothing, Forecasting and Prediction of Discrete Time Series , 1964 .

[170]  R. Brown Statistical forecasting for inventory control , 1960 .

[171]  Peter R. Winters,et al.  Forecasting Sales by Exponentially Weighted Moving Averages , 1960 .

[172]  M. H. Quenouille,et al.  The analysis of multiple time-series , 1958 .

[173]  A. P. Bertwistle POSITIVE OR NEGATIVE , 1955 .

[174]  R. Prado,et al.  Bayesian Forecasting and Dynamic Models , 2020 .

[175]  T. Evgeniou,et al.  To combine or not to combine: selecting among forecasts and their combinations , 2005 .

[176]  Charles C. Holt,et al.  Author's retrospective on ‘Forecasting seasonals and trends by exponentially weighted moving averages’ , 2004 .

[177]  Jae H. Kim Bootstrap prediction intervals for autoregression using asymptotically mean-unbiased estimators , 2004 .

[178]  Francisco F. R. Ramos Forecasts of market shares from VAR and BVAR models: a comparison of their accuracy , 2003 .

[179]  Anne B. Koehler,et al.  Normalization of seasonal factors in Winters’ methods , 2003 .

[180]  Yue Fang,et al.  Forecasting combination and encompassing tests , 2003 .

[181]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[182]  Nigel Meade,et al.  A comparison of the accuracy of short term foreign exchange forecasting methods , 2002 .

[183]  M. Veall,et al.  Bootstrap prediction intervals for single period regression forecasts , 2002 .

[184]  Chris Brooks,et al.  Benchmarks and the accuracy of GARCH model estimation , 2001 .

[185]  Howard Grubb,et al.  Long lead-time forecasting of UK air passengers by Holt-Winters methods with damped trend , 2001 .

[186]  Greg Tkacz Neural network forecasting of Canadian GDP growth , 2001 .

[187]  Rob J. Hyndman,et al.  It's time to move from 'what' to 'why' , 2001 .

[188]  Georges A. Darbellay,et al.  Forecasting the short-term demand for electricity: Do neural networks stand a better chance? , 2000 .

[189]  Michael K. Andersson Do long-memory models have long memory? , 2000 .

[190]  Wouter den Haan,et al.  CAViaR : Conditional Autoregressive Value at Risk by Regression Quantiles , 1999 .

[191]  Werner A. Stahel,et al.  Forecasting demand for special telephone services: A case study , 1990 .

[192]  C. Chatfield,et al.  Prediction intervals for the Holt-Winters forecasting procedure , 1990 .

[193]  Irma J. Terpenning,et al.  STL : A Seasonal-Trend Decomposition Procedure Based on Loess , 1990 .

[194]  Ken Holden,et al.  An examination of vector autoregressive forecasts for the U.K. economy , 1990 .

[195]  Arnold L. Sweet,et al.  A note on a comparison of exponential smoothing methods for forecasting seasonal series , 1989 .

[196]  J. Ledolter The effect of additive outliers on the forecasts from ARIMA models , 1989 .

[197]  Paul Newbold,et al.  On exponential smoothing and the assumption of deterministic trend plus white noise data-generating models , 1989 .

[198]  J. LeSage Incorporating regional wage relations in local forecasting models with a Bayesian prior , 1989 .

[199]  J. Keith Ord,et al.  Forecasting using automatic identification procedures: A comparative analysis , 1989 .

[200]  Benito E. Flores,et al.  The utilization of the Wilcoxon test to compare forecasting methods: A note , 1989 .

[201]  Winston T. Lin Modeling and forecasting hospital patient movements: Univariate and multiple time series approaches , 1989 .

[202]  W. D. Ray Rates of convergence to steady state for the linear growth version of a dynamic linear model (DLM) , 1989 .

[203]  Danny Pfeffermann,et al.  Multivariate exponential smoothing: Method and practice , 1989 .

[204]  Pierre Lefrançois,et al.  Confidence intervals for non-stationary forecast errors: Some empirical results for the series in the M-competition , 1989 .

[205]  Richard Withycombe,et al.  Forecasting with combined seasonal indices , 1989 .

[206]  John O. McClain,et al.  Dominant tracking signals , 1988 .

[207]  Scott E. Hein,et al.  Forecasting the daily federal funds rate , 1988 .

[208]  R. Fildes,et al.  Forecasting and loss functions , 1988 .

[209]  J. Keith Ord,et al.  Future developments in forecasting : The time series connexion , 1988 .

[210]  Kenneth O. Cogger,et al.  Proposals for research in time series forecasting , 1988 .

[211]  R.M.J. Heuts,et al.  Forecasting the Dutch heavy truck market : A multivariate approach , 1988 .

[212]  Richard A. Ashley,et al.  On the relative worth of recent macroeconomic forecasts , 1988 .

[213]  Phoebus J. Dhrymes,et al.  A comparison of the forecasting performance of WEFA and ARIMA time series methods , 1988 .

[214]  Robert P. Leone Forecasting the effect of an environmental change on market performance: An intervention time-series approach , 1987 .

[215]  Robert Pavur,et al.  A comparison of the accuracy of the Box-Jenkins method with that of automated forecasting methods , 1987 .

[216]  Satya Dev Gupta,et al.  Testing causality: Some caveats and a suggestion , 1987 .

[217]  Spyros Makridakis,et al.  Confidence intervals: An empirical investigation of the series in the M-competition , 1987 .

[218]  Rik Hafer,et al.  The sensitivity of VAR forecasts to alternative lag structures , 1987 .

[219]  Helmut Lütkepohl,et al.  Comparison of predictors for temporally and contemporaneously aggregated time series , 1986 .

[220]  G. Huyot,et al.  Analysis of Revisions in the Seasonal Adjustment of Data Using X-11-Arima Model-Based filters , 1986 .

[221]  Robert M. Kunst,et al.  A forecasting comparison of some var techniques , 1986 .

[222]  Donald Poskitt,et al.  The selection and use of linear and bilinear time series models , 1986 .

[223]  E. McKenzie,et al.  Error analysis for winters' additive seasonal forecasting system , 1986 .

[224]  John L. Kling,et al.  A comparison of multivariate forecasting procedures for economic time series , 1985 .

[225]  D. Bunn,et al.  Statistical efficiency in the linear combination of forecasts , 1985 .

[226]  Arnold L. Sweet,et al.  Computing the variance of the forecast error for the holt‐winters seasonal models , 1985 .

[227]  Everette S. Gardner,et al.  Exponential smoothing: The state of the art , 1985 .

[228]  Keith W. Hipel,et al.  Forecasting monthly riverflow time series , 1985 .

[229]  Bovas Abraham,et al.  Some comments on the initialization of exponential smoothing , 1984 .

[230]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[231]  Paul Newbold,et al.  ARIMA model building and the time series analysis approach to forecasting , 1983 .

[232]  R. Genesio,et al.  Short term load forecasting in electric power systems: A comparison of ARMA models and extended wiener filtering , 1983 .

[233]  Emanuel Parzen,et al.  ARARMA models for time series analysis and forecasting , 1982 .

[234]  C. B. Tilanus,et al.  Applied Economic Forecasting , 1966 .

[235]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.