Attosecond spectroscopy in condensed matter

Comprehensive knowledge of the dynamic behaviour of electrons in condensed-matter systems is pertinent to the development of many modern technologies, such as semiconductor and molecular electronics, optoelectronics, information processing and photovoltaics. Yet it remains challenging to probe electronic processes, many of which take place in the attosecond (1 as = 10-18 s) regime. In contrast, atomic motion occurs on the femtosecond (1 fs = 10-15 s) timescale and has been mapped in solids in real time using femtosecond X-ray sources. Here we extend the attosecond techniques previously used to study isolated atoms in the gas phase to observe electron motion in condensed-matter systems and on surfaces in real time. We demonstrate our ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten. Our data reveal a delay of approximately 100 attoseconds between the emission of photoelectrons that originate from localized core states of the metal, and those that are freed from delocalized conduction-band states. These results illustrate that attosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attosecond timescale in condensed-matter systems and on surfaces.

[1]  A. Borisov,et al.  Dimensionality effects in time-dependent screening , 2004 .

[2]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[3]  U. Kleineberg,et al.  Atomic transient recorder , 2004, Nature.

[4]  P. Feulner,et al.  Direct observation of electron dynamics in the attosecond domain , 2005, Nature.

[5]  J. Fujimoto,et al.  Picosecond laser interaction with metallic zirconium , 1982 .

[6]  Glover,et al.  Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation. , 1996, Physical review letters.

[7]  Richard Haight,et al.  Electron dynamics at surfaces , 1995 .

[8]  Muller,et al.  Observation of laser-assisted Auger decay in argon. , 1994, Physical review letters.

[9]  Bas Huijbregts,et al.  Catastrophic ape decline in western equatorial Africa , 2003, Nature.

[10]  A. Scrinzi,et al.  Attosecond streaking measurements , 2005 .

[11]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[12]  C. N. Berglund,et al.  Photoemission Studies of Copper and Silver: Theory , 1964 .

[13]  F. Quéré,et al.  Temporal characterization of attosecond XUV fields , 2005 .

[14]  R. Merlin,et al.  Light Scattering in Solids IX , 2006 .

[15]  U. Heinzmann,et al.  Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy , 2001 .

[16]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[17]  Christian Spielmann,et al.  Femtosecond x-ray science , 2006 .

[18]  Glover,et al.  Subpicosecond Thomson scattering measurements of optically ionized helium plasmas. , 1994, Physical review letters.

[19]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths , 2005 .

[20]  U. Kleineberg,et al.  Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses. , 2006, Applied optics.

[21]  P. A. Brühwiler,et al.  Charge-transfer dynamics studied using resonant core spectroscopies , 2002 .

[22]  D. W. Ward,et al.  Tracking the motion of charges in a terahertz light field by femtosecond X-ray diffraction , 2006, Nature.

[23]  H. Kapteyn,et al.  The laser-assisted photoelectric effect on surfaces , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[24]  K. Siegbahn Electron spectroscopy - an outlook , 1974 .

[25]  Hrvoje Petek,et al.  Femtosecond Time-Resolved Two-Photon Photoemission Studies of Electron Dynamics in Metals , 1998 .

[26]  L. Poletto,et al.  Isolated Single-Cycle Attosecond Pulses , 2006, Science.

[27]  R. Haight,et al.  Tunable photoemission with harmonics of subpicosecond lasers , 1994 .

[28]  J. Hajdu,et al.  Ultrafast Bond Softening in Bismuth: Mapping a Solid's Interatomic Potential with X-rays , 2007, Science.

[29]  E. Goulielmakis,et al.  Direct Measurement of Light Waves , 2004, Science.

[30]  Ferenc Krausz,et al.  Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. , 2002, Physical review letters.

[31]  F. Tauser,et al.  How many-particle interactions develop after ultrafast excitation of an electron–hole plasma , 2001, Nature.

[32]  T. Fauster,et al.  Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces , 1997 .