Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model

[1] We present the impact tests that preceded the most recent operational upgrades to the land surface model used in the National Centers for Environmental Prediction (NCEP) mesoscale Eta model, whose operational domain includes North America. These improvements consist of changes to the “Noah” land surface model (LSM) physics, most notable in the area of cold season processes. Results indicate improved performance in forecasting low-level temperature and humidity, with improvements to (or without affecting) the overall performance of the Eta model quantitative precipitation scores and upper air verification statistics. Remaining issues that directly affect the Noah LSM performance in the Eta model include physical parameterizations of radiation and clouds, which affect the amount of available energy at the surface, and stable boundary layer and surface layer processes, which affect surface turbulent heat fluxes and ultimately the surface energy budget.

[1]  A. Gemant The Thermal Conductivity of Soils , 1950 .

[2]  G. A. Nakshabandi,et al.  Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties , 1965 .

[3]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[4]  Virgil J. Lunardini,et al.  Heat transfer in cold climates , 1981 .

[5]  R. Pielke,et al.  Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer , 1981 .

[6]  E. Matthews Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies , 1983 .

[7]  M. Ek,et al.  The Influence of Atmospheric Stability on Potential Evaporation , 1984 .

[8]  H. Pan,et al.  A two-layer model of soil hydrology , 1984 .

[9]  David A. Robinson,et al.  Maximum Surface Albedo of Seasonally Snow-Covered Lands in the Northern Hemisphere. , 1985 .

[10]  H. Pan,et al.  Interaction between soil hydrology and boundary-layer development , 1987 .

[11]  Piers J. Sellers,et al.  A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB) , 1989 .

[12]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[13]  Zavisa Janjic,et al.  The Step-Mountain Coordinate: Physical Package , 1990 .

[14]  J. Mahfouf,et al.  Comparative Study of Various Formulations of Evaporations from Bare Soil Using In Situ Data , 1991 .

[15]  R. Dickinson,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[16]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[17]  T. Black The new NMC mesoscale Eta Model: description and forecast examples , 1994 .

[18]  D. Deaven,et al.  Changes to the Operational ''Early'' Eta Analysis / Forecast System at the National Centers for Environmental Prediction , 1996 .

[19]  E. Rasmusson,et al.  Studies of North American continental‐scale hydrology using Eta model forecast products , 1996 .

[20]  Y. Xue,et al.  Modeling of land surface evaporation by four schemes and comparison with FIFE observations , 1996 .

[21]  K. Mitchell,et al.  Simple water balance model for estimating runoff at different spatial and temporal scales , 1996 .

[22]  Albert A. M. Holtslag,et al.  Simulation of Surface Fluxes and Boundary Layer Development over the Pine Forest in HAPEX-MOBILHY , 1996 .

[23]  K. Mitchell,et al.  Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data , 1997 .

[24]  Eric F. Wood,et al.  A soil‐vegetation‐atmosphere transfer scheme for modeling spatially variable water and energy balance processes , 1997 .

[25]  R. Dickinson,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[26]  K. Mitchell,et al.  Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface Scheme of the NCEP Mesoscale Eta Model , 1997 .

[27]  Zong-Liang Yang,et al.  Sensitivity of Latent Heat Flux from PILPS Land-Surface Schemes to Perturbations of Surface Air Temperature , 1998 .

[28]  B. Ramsay,et al.  The interactive multisensor snow and ice mapping system , 1998 .

[29]  W. J. Shuttleworth,et al.  Evaluating NCEP Eta Model–Derived Data against Observations , 1998 .

[30]  Zong-Liang Yang,et al.  The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:: 1. Experiment description and summary intercomparisons , 1998 .

[31]  Eric F. Wood,et al.  The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures , 1998 .

[32]  G. Gutman,et al.  The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models , 1998 .

[33]  G. Gutman,et al.  Mapping global land surface albedo from NOAA AVHRR , 1999 .

[34]  K. Mitchell,et al.  A parameterization of snowpack and frozen ground intended for NCEP weather and climate models , 1999 .

[35]  R. Marchand,et al.  An evaluation of NCEP Eta model predictions of surface energy budget and cloud properties by comparison with measured ARM data , 1999 .

[36]  Jean-François Mahfouf,et al.  The representation of soil moisture freezing and its impact on the stable boundary layer , 1999 .

[37]  Fei Chen,et al.  Using the GEWEX/ISLSCP Forcing Data to Simulate Global Soil Moisture Fields and Hydrological Cycle f , 1999 .

[38]  Stanley G. Benjamin,et al.  Assessment of land-surface energy budgets from regional and global models , 1999 .

[39]  M. Ek,et al.  Validation Study of the CAPS Model Land Surface Scheme Using the 1987 Cabauw/PILPS Dataset. , 1999 .

[40]  W. J. Shuttleworth,et al.  Sensitivity of ground heat flux to vegetation cover fraction and leaf area index , 1999 .

[41]  Stanley G. Benjamin,et al.  Parameterization of cold-season processes in the MAPS land-surface scheme , 2000 .

[42]  Fedor Mesinger Chapter 13 - Numerical Methods: The Arakawa Approach, Horizontal Grid, Global, and Limited-Area Modeling , 2000 .

[43]  Aaron Boone,et al.  The Influence of the Inclusion of Soil Freezing on Simulations by a Soil–Vegetation–Atmosphere Transfer Scheme , 2000 .

[44]  Zong-Liang Yang,et al.  Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). , 2000 .

[45]  A. K. Betts,et al.  O ine validation of the ERA 40 surface scheme , 2000 .

[46]  E. Berbery Mesoscale Moisture Analysis of the North American Monsoon , 2001 .

[47]  Pierre Etchevers,et al.  An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale Evaluation at an Alpine Site , 2001 .

[48]  R. Dickinson,et al.  The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d) , 2001 .

[49]  K. Mitchell,et al.  Evaluation of the NCEP Mesoscale Eta Model Convective Boundary Layer for Air Quality Applications , 2001 .

[50]  D. Mocko,et al.  Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e) - 1: Experiment description and summary intercomparisons , 2003 .

[51]  Michael E. Baldwin,et al.  Assessment of Implementing Satellite-Derived Land Cover Data in the Eta Model , 2003 .

[52]  David J. Stensrud,et al.  The Impact of the Land Surface Physics in the Operational NCEP Eta Model on Simulating the Diurnal Cycle: Evaluation and Testing Using Oklahoma Mesonet Data , 2003 .

[53]  Kenneth E. Mitchell,et al.  Eta model estimated land surface processes and the hydrologic cycle of the Mississippi basin , 2003 .

[54]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .