Stability of Equilibria for a Satellite Subject to Gravitational and Constant Torques

We study the stability of equilibria of a rigid body that moves along a circular orbit and is subject to gravity-gradient and constant torques. For each orientation of the satellite, there exists a constant torque that provides an equilibrium. For two important special cases, stability can be studied analytically. When one of the satellite's central principal axes is aligned with one of the axes of the orbital reference frame, the necessary conditions of stability are satisfied for appropriate values of inertial parameters. When one of the principal axes lies in a coordinate plane of the orbital frame, equilibria are proved to be unstable. In the general case, the stability is studied numerically.

[1]  R. A. Gick,et al.  Analytical Solutions for Thrusting, Spinning Spacecraft Subject to Constant Forces , 2005 .

[2]  A. Guerman,et al.  Influence of Constant Torque on Equilibria of Satellite in Circular Orbit , 2003 .

[3]  V. Sarychev,et al.  Relative Equilibria of a Gyrostat Satellite with Internal Angular Momentum Along a Principal Axis , 2001 .

[4]  Panagiotis Tsiotras,et al.  A complex analytic solution for the attitude motion of a near-symmetric rigid body under body-fixed torques , 1991 .

[5]  J. V. D. Ha,et al.  Perturbation solution of attitude motion under body-fixed torques , 1985 .

[6]  M. Frik Attitude stability of satellites subjected to gravity gradient and aerodynamic torques , 1969 .

[7]  R. Roberson Equilibria of orbiting gyrostats. , 1968 .

[8]  G. Nurre Effects of aerodynamic torque on an asymmetric, gravity-stabilized satellite. , 1968 .

[9]  R. Longman,et al.  General Solution for the Equilibria of Orbiting Gyrostats Subject to Gravitational Torques , 1968 .

[10]  T. B. Garber INFLUENCE OF CONSTANT DISTURBING TORQUES ON THE MOTION OF GRAVITY-GRADIENT STABILIZED SATELLITES , 1963 .

[11]  R. Grammel Ein Problem des selbsterregten uusymmetrischen Kreisels , 1960 .

[12]  U. T. Bödewadt Der symmetrische Kreisel bei zeitfester Drehkraft , 1952 .

[13]  V. Sarychev,et al.  Relative equilibria of a satellite subjected to gravitational and aerodynamic torques , 2000 .

[14]  R. Longman Attitude equilibria and stability of arbitrary gyrostat satellites under gravitational torques , 1975 .