Deep combining of local phase quantization and histogram of oriented gradients for indoor positioning based on smartphone camera

To achieve high accuracy in indoor positioning using a smartphone, there are two limitations: (1) limited computational and memory resources of the smartphone and (2) the human walking in large buildings. To address these issues, we propose a new feature descriptor by deeply combining histogram of oriented gradients and local phase quantization. This feature is a local phase quantization of a salient histogram of oriented gradient visualizing image, which is robust in indoor scenarios. Moreover, we introduce a base station–based indoor positioning system for assisting to reduce the image matching at runtime. The experimental results show that accurate and efficient indoor location positioning is achieved.

[1]  Joel Z. Leibo,et al.  Subtasks of Unconstrained Face Recognition , 2014, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[2]  Esa Rahtu,et al.  Rotation invariant local phase quantization for blur insensitive texture analysis , 2008, 2008 19th International Conference on Pattern Recognition.

[3]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[5]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[6]  Heesung Jun,et al.  Vision-based location positioning using augmented reality for indoor navigation , 2008, IEEE Transactions on Consumer Electronics.

[7]  Xun Li,et al.  Image matching techniques for vision-based indoor navigation systems: performance analysis for 3D map based approach , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[8]  M. Jansson,et al.  Fusing visual tags and inertial information for indoor navigation , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[9]  Chung-Hao Huang,et al.  Real-Time RFID Indoor Positioning System Based on Kalman-Filter Drift Removal and Heron-Bilateration Location Estimation , 2015, IEEE Transactions on Instrumentation and Measurement.

[10]  Dieter Schmalstieg,et al.  Structured visual markers for indoor pathfinding , 2002, The First IEEE International Workshop Agumented Reality Toolkit,.

[11]  Babak Saleh,et al.  Learning style similarity for searching infographics , 2015, Graphics Interface.

[12]  Andrew G. Dempster,et al.  How feasible is the use of magnetic field alone for indoor positioning? , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[13]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[14]  Luca Mainetti,et al.  A survey on indoor positioning systems , 2014, 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM).

[15]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[16]  C. Rizos,et al.  Locata: A New Technology for High Precision Positioning , 2009 .

[17]  Yang Lei,et al.  Situation and development tendency of indoor positioning , 2013, China Communications.

[18]  Xuelong Li,et al.  Efficient HOG human detection , 2011, Signal Process..

[19]  Yang Liu,et al.  A robust local sparse coding method for image classification with Histogram Intersection Kernel , 2016, Neurocomputing.

[20]  Hui Wang,et al.  A Multiscale Method for HOG-Based Face Recognition , 2015, ICIRA.

[21]  Eckehard G. Steinbach,et al.  Camera-based indoor positioning using scalable streaming of compressed binary image signatures , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[22]  Antonio Torralba,et al.  HOGgles: Visualizing Object Detection Features , 2013, 2013 IEEE International Conference on Computer Vision.

[23]  Janne Heikkilä,et al.  Local phase quantization descriptors for blur robust and illumination invariant recognition of color textures , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[24]  Tamás D. Gedeon,et al.  Emotion recognition using PHOG and LPQ features , 2011, Face and Gesture 2011.

[25]  Dieter Schmalstieg,et al.  Pose tracking from natural features on mobile phones , 2008, 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality.

[26]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Esa Rahtu,et al.  Local Phase Quantization for Blur Insensitive Texture Description , 2013, Local Binary Patterns.

[28]  Hao Jiang,et al.  An online sequential extreme learning machine approach to WiFi based indoor positioning , 2014, 2014 IEEE World Forum on Internet of Things (WF-IoT).

[29]  Liviu Iftode,et al.  Indoor Localization Using Camera Phones , 2006, Seventh IEEE Workshop on Mobile Computing Systems & Applications (WMCSA'06 Supplement).

[30]  Chunhan Lee,et al.  Indoor positioning system based on incident angles of infrared emitters , 2004, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004.

[31]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[32]  Chadly Marouane,et al.  Indoor positioning using smartphone camera , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[33]  Daniel Cremers,et al.  Camera-based navigation of a low-cost quadrocopter , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.