The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Testing gravity with redshift-space distortions using the power spectrum multipoles

We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 (DR11) sample, which consists of 690 827 galaxies in the redshift range 0.43 < z < 0.7 and has a sky coverage of 8498 deg^2. We perform our analysis in Fourier space using a power spectrum estimator suggested by Yamamoto et al. We measure the multipole power spectra in a self-consistent manner for the first time in the sense that we provide a proper way to treat the survey window function and the integral constraint, without the commonly used assumption of an isotropic power spectrum and without the need to split the survey into subregions. The main cosmological signals exploited in our analysis are the baryon acoustic oscillations and the signal of redshift space distortions, both of which are distorted by the Alcock–Paczynski effect. Together, these signals allow us to constrain the distance ratio D_V(z_eff)/r_s(z_d) = 13.89 ± 0.18, the Alcock–Paczynski parameter F_AP(z_eff) = 0.679 ± 0.031 and the growth rate of structure f (z_eff)σ_8(z_eff) = 0.419 ± 0.044 at the effective redshift z_eff = 0.57. We emphasize that our constraints are robust against possible systematic uncertainties. In order to ensure this, we perform a detailed systematics study against CMASS mock galaxy catalogues and N-body simulations. We find that such systematics will lead to 3.1 per cent uncertainty for fσ_8 if we limit our fitting range to k = 0.01–0.20 h Mpc^−1, where the statistical uncertainty is expected to be three times larger. We did not find significant systematic uncertainties for D_V/r_s or F_AP. Combining our data set with Planck to test General Relativity (GR) through the simple γ-parametrization, where the growth rate is given by $f(z) = \Omega ^{\gamma }_{\rm m}(z)$, reveals a ∼2σ tension between the data and the prediction by GR. The tension between our result and GR can be traced back to a tension in the clustering amplitude σ_8 between CMASS and Planck.

[1]  J. Kneib,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering , 2013, 1312.4889.

[2]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[3]  U. Seljak,et al.  Wide angle effects in future galaxy surveys , 2013, 1308.1093.

[4]  P. Mcdonald,et al.  Understanding Higher-Order Nonlocal Halo Bias at Large Scales by Combining the Power Spectrum with the Bispectrum , 2014, 1405.1447.

[5]  Alexie Leauthaud,et al.  A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies , 2014, 1404.3742.

[6]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering , 2013, 1312.4899.

[7]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples , 2013, 1312.4854.

[8]  Ashley J. Ross,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.

[9]  Chia-Hsun Chuang,et al.  Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies , 2013, 1310.6468.

[10]  S. Dodelson,et al.  Nonlocal gravity and structure in the Universe , 2013, 1310.4329.

[11]  A. Oka,et al.  Simulating the anisotropic clustering of luminous red galaxies with subhaloes: a direct confrontation with observation and cosmological implications , 2013, 1310.2672.

[12]  Takahiro Nishimichi,et al.  Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample , 2013, 1310.2820.

[13]  K. Koyama,et al.  Beyond consistency test of gravity with redshift-space distortions at quasilinear scales , 2013, 1309.6783.

[14]  Martin White,et al.  Mock galaxy catalogues using the quick particle mesh method , 2013, 1309.5532.

[15]  Technology,et al.  On the systematic errors of cosmological-scale gravity tests using redshift-space distortion: non-linear effects and the halo bias , 2013, 1308.6087.

[16]  B. Reid,et al.  An analytic model for redshift-space distortions , 2013, 1306.1804.

[17]  T. Matsubara Integrated Perturbation Theory and One-loop Power Spectra of Biased Tracers , 2013, 1304.4226.

[18]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[19]  D. Wake,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring DA and H at z = 0.57 from the baryon acoustic peak in the data release 9 spectroscopic galaxy sample , 2013, 1303.4666.

[20]  J. Blazek,et al.  Geometric and dynamic distortions in anisotropic galaxy clustering , 2013, 1311.5563.

[21]  J. Brinkmann,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.

[22]  Takahiro Sato,et al.  Window Effect in the Power Spectrum Analysis of a Galaxy Redshift Survey , 2013, 1308.3551.

[23]  S. Capozziello,et al.  Extended Gravity: State of the Art and Perspectives , 2013, 1307.4523.

[24]  R. Smith,et al.  Halo stochasticity from exclusion and nonlinear clustering , 2013, 1305.2917.

[25]  Jon Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements and the strong power of f(z)σ8(z) on constraining dark energy , 2013, 1303.4486.

[26]  Kazuhiro Yamamoto,et al.  Impacts of satellite galaxies on the redshift-space distortions , 2013, 1303.3380.

[27]  F. Bernardeau,et al.  Precision modeling of redshift-space distortions from a multipoint propagator expansion , 2013, 1301.3624.

[28]  Adam D. Myers,et al.  Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9 , 2013, 1301.3459.

[29]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[30]  Princeton,et al.  Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes , 2012, 1211.7077.

[31]  Princeton,et al.  Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.

[32]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: constraints on primordial non-Gaussianity , 2012, 1208.1491.

[33]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[34]  Lado Samushia,et al.  The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: testing deviations from Λ and general relativity using anisotropic clustering of galaxies , 2012, 1206.5309.

[35]  F. Beutler,et al.  A combined measurement of cosmic growth and expansion from clusters of galaxies, the CMB and galaxy clustering , 2012, 1205.4679.

[36]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[37]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[38]  F. Bernardeau,et al.  Direct and fast calculation of regularized cosmological power spectrum at two-loop order , 2012, 1208.1191.

[39]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[40]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[41]  P. Mcdonald,et al.  Distribution function approach to redshift space distortions. Part IV: perturbation theory applied to dark matter , 2012, 1207.0839.

[42]  Will Saunders,et al.  The 6dF Galaxy Survey: z \approx 0 measurement of the growth rate and sigma_8 , 2012, 1204.4725.

[43]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[44]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[45]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[46]  L. Guzzo,et al.  Modelling non‐linear redshift‐space distortions in the galaxy clustering pattern: systematic errors on the growth rate parameter , 2012, 1202.5559.

[47]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[48]  P. Mcdonald,et al.  Evidence for quadratic tidal tensor bias from the halo bispectrum , 2012, 1201.4827.

[49]  R. Sheth,et al.  Gravity and Large-Scale Nonlocal Bias , 2012, 1201.3614.

[50]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[51]  Hong Guo,et al.  A NEW METHOD TO CORRECT FOR FIBER COLLISIONS IN GALAXY TWO-POINT STATISTICS , 2011, 1111.6598.

[52]  P. Mcdonald,et al.  Distribution function approach to redshift space distortions , 2011, 1109.1888.

[53]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae , 2011, 1108.2637.

[54]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[55]  A. Taruya,et al.  Baryon Acoustic Oscillations in 2D II: Redshift-space halo clustering in N-body simulations , 2011, 1106.4562.

[56]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[57]  Ipmu,et al.  Using galaxy–galaxy weak lensing measurements to correct the finger of God , 2011, 1106.1640.

[58]  B. Reid,et al.  Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime , 2011, 1105.4165.

[59]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[60]  M. Blanton,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION , 2013, 1306.4686.

[61]  D. Eisenstein,et al.  GALAXY BIAS AND ITS EFFECTS ON THE BARYON ACOUSTIC OSCILLATION MEASUREMENTS , 2011, 1104.1178.

[62]  T. Matsubara Nonlinear Perturbation Theory Integrated with Nonlocal Bias, Redshift-space Distortions, and Primordial Non-Gaussianity , 2011, 1102.4619.

[63]  W. Percival,et al.  Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.

[64]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[65]  Takahiro Sato,et al.  Deconvolution of Window Effect in Galaxy Power Spectrum Analysis , 2010, 1010.0289.

[66]  S. Saito,et al.  Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.

[67]  U. Seljak,et al.  Minimizing the stochasticity of halos in large-scale structure surveys , 2010, 1004.5377.

[68]  B. Jain,et al.  Cosmological Tests of Gravity , 2010, 1004.3294.

[69]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[70]  R. Sheth,et al.  Redshift space correlations and scale-dependent stochastic biasing of density peaks , 2009, 0909.4544.

[71]  M. Manera,et al.  The local bias model in the large-scale halo distribution , 2009, 0912.0446.

[72]  Martin White,et al.  Calibrating the baryon oscillation ruler for matter and halos , 2009, 0906.1198.

[73]  Takahiro Nishimichi,et al.  Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces , 2009, 0906.0507.

[74]  Martin White,et al.  Critical look at cosmological perturbation theory techniques , 2009, 0905.0479.

[75]  U. Seljak,et al.  How to suppress the shot noise in galaxy surveys. , 2009, Physical review letters.

[76]  D. Eisenstein,et al.  The Baryon Oscillation Spectroscopic Survey: Precision measurements of the absolute cosmic distance scale , 2009, 0902.4680.

[77]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.

[78]  D. Huterer,et al.  Falsifying Paradigms for Cosmic Acceleration , 2008, 0810.1744.

[79]  M. May,et al.  Challenges to the DGP model from horizon-scale growth and geometry , 2008, 0808.2208.

[80]  T. Matsubara Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture , 2008, 0807.1733.

[81]  Takahiro Sato,et al.  Testing General Relativity with the Multipole Spectra of the SDSS Luminous Red Galaxies , 2008, 0805.4789.

[82]  I. Szapudi,et al.  Non-perturbative effects of geometry in wide-angle redshift distortions , 2008, 0802.2940.

[83]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[84]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[85]  T. Hiramatsu,et al.  A Closure Theory for Nonlinear Evolution of Cosmological Power Spectra , 2007, 0708.1367.

[86]  Rebecca Whitaker Msfc The Evolving Universe , 2008 .

[87]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[88]  Alexander S. Szalay,et al.  The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum , 2007 .

[89]  W. M. Wood-Vasey,et al.  Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined with Other Cosmological Probes , 2007, astro-ph/0701510.

[90]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[91]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[92]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[93]  K. Koyama,et al.  More on ghosts in the Dvali-Gabadaze-Porrati model , 2006 .

[94]  M. Crocce,et al.  Memory of initial conditions in gravitational clustering , 2005, astro-ph/0509419.

[95]  B. Bassett,et al.  A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2005, astro-ph/0505115.

[96]  E. Linder Cosmic growth history and expansion history , 2005, astro-ph/0507263.

[97]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[98]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[99]  Daniel J. Eisenstein Martin White Theoretical uncertainty in baryon oscillations , 2004, astro-ph/0407539.

[100]  R. Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004, astro-ph/0407214.

[101]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[102]  Fermilab,et al.  On the distribution of haloes, galaxies and mass , 2001, astro-ph/0105008.

[103]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[104]  R. Ellis,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.

[105]  M. Porrati,et al.  4D Gravity on a Brane in 5D Minkowski Space , 2000, hep-th/0005016.

[106]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[107]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[108]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[109]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[110]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[111]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[112]  G. Starkman,et al.  Sensitivity of Redshift Distortion Measurements to Cosmological Parameters , 1997, astro-ph/9707008.

[113]  Donald Hamilton,et al.  The evolving universe. Selected topics on large-scale structure and on the properties of galaxies , 1998 .

[114]  S. Shectman,et al.  The Power Spectrum of Galaxy Clustering in the Las Campanas Redshift Survey , 1996, astro-ph/9606055.

[115]  A. Heavens,et al.  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[116]  T. Matsubara,et al.  Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant , 1996, astro-ph/9604142.

[117]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[118]  Carlton M. Baugh,et al.  The three-dimensional power spectrum measured from the APM Galaxy Survey – I. Use of the angular correlation function , 1993 .

[119]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[120]  J. Peacock,et al.  The large-scale clustering of radio galaxies , 1991 .

[121]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[122]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[123]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[124]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[125]  E. Turner,et al.  A statistical method for determining the cosmological density parameter from the redshifts of a complete sample of galaxies. , 1977 .

[126]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[127]  V. Rubin,et al.  Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions , 1970 .

[128]  K. Freeman On the disks of spiral and SO Galaxies , 1970 .

[129]  R. Pound,et al.  Apparent Weight of Photons , 1960 .

[130]  F. Kahn,et al.  Intergalactic Matter and the Galaxy. , 1959 .

[131]  F. Zwicky On the Masses of Nebulae and of Clusters of Nebulae , 1937 .