BASIC - A genetic algorithm for engineering problems solution

This paper introduces in details a genetic algorithm-called BASIC, which is designed to take advantage of well known genetic schemes so as to be able to deal with numerous optimization problems. BASIC GA follows all common steps of the genetic algorithms. It involves real representation schemes for both real and integer variables. Three biased selection schemes for reproduction; four for recombination and three for mutation are applied in it and a new selection scheme for replacement is approached. BASIC GA can be easy adjusted to the concrete problems by fitting its global and local parameters. It provides an opportunity to the genetic operators to be extended with new schemes. A range of various optimization problems has been solved to test its capability. To handle all sorts of constraints the static and dynamic penalty functions are used. The solutions obtained are commensurable with other genetic algorithms and solution techniques.

[1]  R. Sargent,et al.  Optimum Design of Multipurpose Chemical Plants , 1979 .

[2]  Hyun Myung,et al.  Evolutionary programming techniques for constrained optimization problems , 1997, IEEE Trans. Evol. Comput..

[3]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[4]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[5]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[6]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[7]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[8]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[9]  Venkat Venkatasubramanian,et al.  Parametric Sensitivity and Search-Space Characterization Studies of Genetic Algorithms for Computer-Aided Polymer Design , 1998, J. Chem. Inf. Comput. Sci..

[10]  Serge Domenech,et al.  A two-stage methodology for short-term batch plant scheduling , 1998 .

[11]  Hugo de Garis,et al.  Genetic Programming , 1990, ML.

[12]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[13]  Patrick D. Surry,et al.  A Multi-objective Approach to Constrained Optimisation of Gas Supply Networks: the COMOGA Method , 1995, Evolutionary Computing, AISB Workshop.

[14]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[15]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[16]  Marc Schoenauer,et al.  Constrained GA Optimization , 1993, ICGA.

[17]  Hyun Myung,et al.  Hybrid Interior-Langrangian Penalty Based Evolutionary Optimization , 1998, Evolutionary Programming.

[18]  C. Floudas,et al.  Global optimum search for nonconvex NLP and MINLP problems , 1989 .

[19]  H. Adeli,et al.  Augmented Lagrangian genetic algorithm for structural optimization , 1994 .

[20]  Charles W. Carroll The Created Response Surface Technique for Optimizing Nonlinear, Restrained Systems , 1961 .

[21]  R. Kowalczyk,et al.  Constraint consistent genetic algorithms , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[22]  V.M. Becerra,et al.  Genetic algorithms for optimal control of beer fermentation , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[23]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[24]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[25]  V. S. Summanwar,et al.  Solution of constrained optimization problems by multi-objective genetic algorithm , 2002 .

[26]  Jan Paredis,et al.  Co-evolutionary Constraint Satisfaction , 1994, PPSN.

[27]  V. Rao Vemuri,et al.  A Genetic Search in Frequency Space for Stabilizing Atoms by High-Intensity Laser Fields , 2000 .

[28]  J. C. Bean Genetics and random keys for sequencing amd optimization , 1993 .

[29]  G. McCormick,et al.  Extensions of SUMT for Nonlinear Programming: Equality Constraints and Extrapolation , 1966 .

[30]  L. Puigjaner,et al.  Parameter estimation with genetic algorithm in control of fed-batch reactors , 2002 .

[31]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[32]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[33]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[34]  Bryan C. Sanctuary,et al.  Using Genetic Algorithms with a Priori Knowledge for Quantitative NMR Signal Analysis , 1998, J. Chem. Inf. Comput. Sci..

[35]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[36]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[37]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[38]  Atidel B. Hadj-Alouane,et al.  A dual genetic algorithm for bounded integer programs James C. Bean, Atidel Ben Hadj-Alouane. , 1993 .

[39]  A. Oyama,et al.  Real-Coded Adaptive Range Genetic Algorithm and Its Application to Aerodynamic Design , 2000 .