Bonding and Diels–Alder reactions of substituted 2-borabicyclo(1.1.0)but-1(3)-enes: a theoretical study

[1]  K. Houk,et al.  Diels–Alder cycloadditions of strained azacyclic allenes , 2018, Nature Chemistry.

[2]  Y. Mo,et al.  B-Heterocyclic Carbene Arising from Charge Shift: A Computational Verification. , 2018, Chemistry.

[3]  Dongxia Ma,et al.  Propane CH activation by palladium complexes bearing ligands with Charge-shift bonding characteristics: A DFT study , 2017 .

[4]  Dongxia Ma,et al.  Rational design of model Pd(ii)-catalysts for C-H activation involving ligands with charge-shift bonding characteristics. , 2017, Physical chemistry chemical physics : PCCP.

[5]  Brian J. Levandowski,et al.  Hyperconjugative, Secondary Orbital, Electrostatic, and Steric Effects on the Reactivities and Endo and Exo Stereoselectivities of Cyclopropene Diels-Alder Reactions. , 2016, Journal of the American Chemical Society.

[6]  Jinxia Liang,et al.  Theoretical Investigation of Promising Molecules for Obtaining Complexes with Planar Tetracoordinate Carbon , 2016, ACS omega.

[7]  Congjie Zhang,et al.  Theoretical Investigation of Obtaining Compounds with Planar Tetracoordinate Carbons by Frustrated Lewis Pairs. , 2015, The journal of physical chemistry. A.

[8]  K. Houk,et al.  Synthesis and reactivity comparisons of 1-methyl-3-substituted cyclopropene mini-tags for tetrazine bioorthogonal reactions. , 2014, Chemistry.

[9]  A. Wiemer,et al.  Cyclopropene cycloadditions with annulated furans: total synthesis of (+)- and (-)-frondosin B and (+)-frondosin A. , 2014, Journal of the American Chemical Society.

[10]  Congjie Zhang,et al.  Evidence for Charge-Shift Bonding in [1.1.1]Propellanes C5H6 and E5Me6 (E = Si, Ge, Sn): A Theoretical Investigation , 2013 .

[11]  K. Houk,et al.  Diels-Alder reactivities of strained and unstrained cycloalkenes with normal and inverse-electron-demand dienes: activation barriers and distortion/interaction analysis. , 2013, Journal of the American Chemical Society.

[12]  Derek S. Tan,et al.  Total synthesis, relay synthesis, and structural confirmation of the C18-norditerpenoid alkaloid neofinaconitine. , 2013, Journal of the American Chemical Society.

[13]  Jennifer A. Prescher,et al.  Isomeric cyclopropenes exhibit unique bioorthogonal reactivities. , 2013, Journal of the American Chemical Society.

[14]  J. Fox,et al.  Chiral cyclopropenyl ketones: reactive and selective Diels-Alder dienophiles. , 2013, The Journal of organic chemistry.

[15]  Fang Liu,et al.  Control and design of mutual orthogonality in bioorthogonal cycloadditions. , 2012, Journal of the American Chemical Society.

[16]  Congjie Zhang,et al.  Toward design of Ag(I) and Au(I) complexes with planar tetracoordinate carbon using novel ligands. , 2012, The journal of physical chemistry. A.

[17]  P. Hiberty,et al.  Quadruple bonding in C2 and analogous eight-valence electron species. , 2012, Nature chemistry.

[18]  M. Shi,et al.  Recent developments of cyclopropene chemistry. , 2011, Chemical Society reviews.

[19]  Sason Shaik,et al.  Classical valence bond approach by modern methods. , 2011, Chemical reviews.

[20]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[21]  Sason Shaik,et al.  An excursion from normal to inverted C-C bonds shows a clear demarcation between covalent and charge-shift C-C bonds. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  P. Hiberty,et al.  Charge-shift bonding and its manifestations in chemistry. , 2009, Nature chemistry.

[23]  Sason Shaik,et al.  The Inverted Bond in [1.1.1]Propellane is a Charge-Shift Bond , 2009 .

[24]  X. Zeng,et al.  Probing the planar tetra-, penta-, and hexacoordinate carbon in carbon-boron mixed clusters. , 2008, Journal of the American Chemical Society.

[25]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[26]  Sason Shaik,et al.  A Chemist's Guide to Valence Bond Theory , 2007 .

[27]  I. Marek,et al.  Enantiomerically enriched cyclopropene derivatives: versatile building blocks in asymmetric synthesis. , 2007, Angewandte Chemie.

[28]  Yi‐hong Ding,et al.  Design of sandwichlike complexes based on the planar tetracoordinate carbon unit CAl4(2-). , 2007, Journal of the American Chemical Society.

[29]  Paul von Ragué Schleyer,et al.  The existence of secondary orbital interactions , 2007, J. Comput. Chem..

[30]  R. Keese,et al.  Carbon flatland: planar tetracoordinate carbon and fenestranes. , 2006, Chemical reviews.

[31]  V. Gevorgyan,et al.  Recent Advances in Cyclopropene Chemistry , 2006 .

[32]  Wei Wu,et al.  XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..

[33]  Si‐Dian Li,et al.  (M4H3X)2B2O2: hydrometal complexes (M = Ni, Mg) containing double tetracoordinate planar nonmetal centers (X = C, N). , 2005, The journal of physical chemistry. A.

[34]  C. Corminboeuf,et al.  Theoretical analysis of the smallest carbon cluster containing a planar tetracoordinate carbon. , 2004, Journal of the American Chemical Society.

[35]  Si‐Dian Li,et al.  M4H4X: hydrometals (M=Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O). , 2004, Angewandte Chemie.

[36]  Giovanni Scalmani,et al.  Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model , 2003, J. Comput. Chem..

[37]  M. Méndez-Rojas,et al.  (C5M2-n)(n-) (M = Li, Na, K, and n = 0, 1, 2). A new family of molecules containing planar tetracoordinate carbons. , 2003, Journal of the American Chemical Society.

[38]  Zhi‐Xiang Wang,et al.  The theoretical design of neutral planar tetracoordinate carbon molecules with C(C)(4) substructures. , 2002, Journal of the American Chemical Society.

[39]  G. Gallup,et al.  Valence Bond Methods: Theory and Applications , 2002 .

[40]  David L. Cooper,et al.  Valence Bond Theory , 2002 .

[41]  R. Poirier,et al.  Endo-exo and facial stereoselectivity in the Diels-Alder reactions of 3-substituted cyclopropenes with butadiene. , 2001, Journal of the American Chemical Society.

[42]  P. Schleyer,et al.  A new strategy to achieve perfectly planar carbon tetracoordination. , 2001 .

[43]  Hai‐feng Zhang,et al.  Pentaatomic Tetracoordinate Planar Carbon, [CAl4]2−: A New Structural Unit and Its Salt Complexes , 2000 .

[44]  J. Simons,et al.  Experimental Observation of Pentaatomic Tetracoordinate Planar Carbon-Containing Molecules , 2000 .

[45]  J. Mayoral,et al.  Do secondary orbital interactions really exist? , 2000, Accounts of chemical research.

[46]  Rasmussen,et al.  Planar-Tetracoordinate Carbon in a Neutral Saturated Hydrocarbon: Theoretical Design and Characterization. , 1999, Angewandte Chemie.

[47]  V. Barone,et al.  A direct procedure for the evaluation of solvent effects in MC-SCF calculations , 1999 .

[48]  H. Fujimoto,et al.  Theoretical Study of Endo Selectivity in the Diels-Alder Reactions between Butadienes and Cyclopropene. , 1999, The Journal of organic chemistry.

[49]  J. Simons,et al.  Tetracoordinated Planar Carbon in the Al4C- Anion. A Combined Photoelectron Spectroscopy and ab Initio Study , 1999 .

[50]  J. Simons,et al.  TETRACOORDINATED PLANAR CARBON IN PENTAATOMIC MOLECULES , 1998 .

[51]  J. Tomasi,et al.  Ab initio study of ionic solutions by a polarizable continuum dielectric model , 1998 .

[52]  B. Jursic A Density Functional Theory Study of Secondary Orbital Overlap in Endo Cycloaddition Reactions. An Example of a Diels-Alder Reaction between Butadiene and Cyclopropene. , 1997, The Journal of organic chemistry.

[53]  P. Schleyer,et al.  ARE THE MOST STABLE FUSED HETEROBICYCLES THE MOST AROMATIC , 1996 .

[54]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[55]  J. Tomasi,et al.  Ab initio study of solvated molecules: A new implementation of the polarizable continuum model , 1996 .

[56]  Y. Apeloig,et al.  Evidence for the Dominant Role of Secondary Orbital Interactions in Determining the Stereochemistry of the Diels-Alder Reaction: The Case of Cyclopropene , 1995 .

[57]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[58]  Philippe C. Hiberty,et al.  Compact valence bond functions with breathing orbitals: Application to the bond dissociation energies of F2 and FH , 1994 .

[59]  L. Radom,et al.  Alkaplanes: A Class of Neutral Hydrocarbons Containing a Potentially Planar Tetracoordinate Carbon. , 1993 .

[60]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[61]  Leo Radom,et al.  Alkaplanes: a class of neutral hydrocarbons containing a potentially planar tetracoordinate carbon , 1993 .

[62]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[63]  Roald Hoffmann,et al.  Planar tetracoordinate carbon , 1970 .

[64]  P. Schleyer,et al.  Evaluation of strain in hydrocarbons. The strain in adamantane and its origin , 1970 .

[65]  R. Hoffmann Orbital Symmetries and endo-exo Relationships in Concerted Cycloaddition Reaction (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[66]  W. Bartley,et al.  Cyclopropene. V. Some Reactions of Cyclopropene1 , 1960 .

[67]  Congjie Zhang,et al.  Structure, bonding and reactivity of coinage metal complexes TML2 and TML2+ (TM = Cu, Ag, Au) with planar tetracoordinate carbon, a theoretical investigation , 2016 .

[68]  P. Hiberty,et al.  The inverted bond in [1.1.1]propellane is a charge-shift bond. , 2009, Angewandte Chemie.

[69]  Z. Cao,et al.  Novel Beltlike and Tubular Structures of Boron and Carbon Clusters Containing the Planar Tetracoordinate Carbon: A Theoretical Study of (C3B2)nH4 (n = 2−6) and (C3B2)n (n = 4−8) , 2008 .

[70]  G. Gallup Valence Bond Methods , 2002 .

[71]  P. von Ragué Schleyer,et al.  A new strategy to achieve perfectly planar carbon tetracoordination. , 2001, Journal of the American Chemical Society.

[72]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .