Controllability of LTI switching systems using nonnegative inputs

This paper investigates controllability of linear time invariant (LTI) switching systems using nonnegative inputs pointing to the relevant structures of the problem. The paper gives some algebraic conditions that guarantees global controllability for this class of systems. It is shown that if the system is globally controllable then the number of necessary switchings to control the system is bounded.

[1]  H. Sussmann,et al.  Reachability by means of nice controls , 1987, 26th IEEE Conference on Decision and Control.

[2]  J. Bokor,et al.  Controllability of bimodal LTI systems , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[3]  Kevin A. Grasse,et al.  Structure of the boundary of the attainable set in certain nonlinear systems , 1985, Mathematical systems theory.

[4]  S. Suslov Nonlinear bang-bang principle in Rn , 1991 .

[5]  Alberto Seeger,et al.  Multivalued Exponentiation Analysis , 2006 .

[6]  V. Veliov,et al.  Controllability of piecewise linear systems , 1986 .

[7]  Shuzhi Sam Ge,et al.  Switched Linear Systems , 2005 .

[8]  A. Krener A Generalization of Chow’s Theorem and the Bang-Bang Theorem to Nonlinear Control Problems , 1974 .

[9]  Vladimir M. Veliov,et al.  On the controllability of switching linear systems , 2005, Autom..

[10]  Michael Heymann,et al.  Controllability of linear systems with positive controls: Geometric considerations , 1975 .

[11]  B. Barmish,et al.  Null Controllability of Linear Systems with Constrained Controls , 2006 .

[12]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[13]  Guangming Xie,et al.  Necessary and sufficient conditions for controllability of switched linear systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[14]  J. Yorke,et al.  Controllability of linear oscillatory systems using positive controls , 1971 .

[15]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[16]  R. Brammer Controllability in Linear Autonomous Systems with Positive Controllers , 1972 .

[17]  Sussmann Nonlinear Controllability and Optimal Control , 1990 .

[18]  S. A. Vakhrameev A bang-bang theorem with a finite number of switchings for nonlinear smooth control systems , 1997 .

[19]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[20]  Zhenyu Yang,et al.  An algebraic approach towards the controllability of controlled switching linear hybrid systems , 2002, Autom..

[21]  Velimir Jurdjevic,et al.  Controllability properties of affine systems , 1984, The 23rd IEEE Conference on Decision and Control.

[22]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[23]  E. D. Sontag,et al.  eb 1 99 9 Further Results on Controllability of Recurrent Neural Networks ∗ , 1999 .

[24]  Shuzhi Sam Ge,et al.  Controllability and reachability criteria for switched linear systems , 2002, Autom..

[25]  S. Saperstone Global Controllability of Linear Systems with Positive Controls , 1973 .

[26]  Héctor J. Sussmann,et al.  Some properties of vector field systems that are not altered by small perturbations , 1976 .

[27]  K. A. Loparo,et al.  Controllability properties of constrained linear systems , 1992 .

[28]  J. Aubin,et al.  Controllability of convex processes , 1985, 1985 24th IEEE Conference on Decision and Control.

[29]  V. Jurdjevic Geometric control theory , 1996 .

[30]  S. Ge,et al.  Switched Linear Systems: Control and Design , 2005 .

[31]  Benedetto Piccoli,et al.  A baire category approach to the Bang-Bang property , 1992 .

[32]  D. Jacobson,et al.  Control with conic control constraint set , 1978 .

[33]  Claudio Altafini,et al.  The reachable set of a linear endogenous switching system , 2002, Syst. Control. Lett..

[34]  J. Aubin,et al.  Existence of Solutions to Differential Inclusions , 1984 .

[35]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[37]  Héctor J. Sussmann A Bang-Bang Theorem with Bounds on the Number of Switchings , 1979 .

[38]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[39]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[40]  P. Wolenski The exponential formula for the reachable set of a Lipschitz differential inclusion , 1990 .

[41]  Jean-Pierre Aubin,et al.  Controllability of convex processes , 1986 .

[42]  Zoltán Szabó,et al.  Necessary and sufficient condition for the controllability of switching linear hybrid systems , 2004, Autom..