Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrödinger Equation
暂无分享,去创建一个
[1] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[2] L. Vázquez,et al. Nonlinear Random Waves , 1994 .
[3] A. Iserles. A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .
[4] Ole Bang,et al. White noise in the two-dimensional nonlinear schrödinger equation , 1995 .
[5] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[6] O. Bang,et al. The influence of noise on critical collapse in the nonlinear Schrödinger equation , 1995 .
[7] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[8] A. Debussche,et al. Numerical simulation of focusing stochastic nonlinear Schrödinger equations , 2002 .
[9] Ying Liu,et al. Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients , 2006 .
[10] C. Schober,et al. Geometric integrators for the nonlinear Schrödinger equation , 2001 .
[11] F. Kh. Abdullaev,et al. Solitons in media with random dispersive perturbations , 1999 .
[12] T. Shardlow. Weak Convergence of a Numerical Method for a Stochastic Heat Equation , 2003 .
[13] Chun Li,et al. Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients , 2007, J. Comput. Phys..
[14] A. D. Bouard,et al. Weak and Strong Order of Convergence of a Semidiscrete Scheme for the Stochastic Nonlinear Schrodinger Equation , 2006 .
[15] M. V. Tretyakov,et al. Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.
[16] C. M. Schober,et al. Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , 1999 .
[17] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[18] Arnaud Debussche,et al. Theoretical and numerical aspects of stochastic nonlinear Schrödinger equations , 2001, Monte Carlo Methods Appl..