On Optimal Mechanisms in the Two-Item Single-Buyer Unit-Demand Setting

We consider the problem of designing a revenue-optimal mechanism in the two-item, single-buyer, unit-demand setting when the buyer's valuations, $(z_1, z_2)$, are uniformly distributed in an arbitrary rectangle $[c,c+b_1]\times[c,c+b_2]$ in the positive quadrant. We provide a complete and explicit solution for arbitrary nonnegative values of $(c,b_1,b_2)$. We identify five simple structures, each with at most five (possibly stochastic) menu items, and prove that the optimal mechanism has one of the five structures. We also characterize the optimal mechanism as a function of $b_1, b_2$, and $c$. When $c$ is low, the optimal mechanism is a posted price mechanism with an exclusion region; when $c$ is high, it is a posted price mechanism without an exclusion region. Our results are the first to show the existence of optimal mechanisms with no exclusion region, to the best of our knowledge.

[1]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[2]  Elias Koutsoupias,et al.  Duality and optimality of auctions for uniform distributions , 2014, SIAM J. Comput..

[3]  G. Pavlov,et al.  Optimal Mechanism for Selling Substitutes , 2006 .

[4]  S. Matthew Weinberg,et al.  Pricing randomized allocations , 2009, SODA '10.

[5]  Nima Haghpanah,et al.  Reverse Mechanism Design , 2014, EC.

[6]  S. Matthew Weinberg,et al.  Pricing lotteries , 2015, J. Econ. Theory.

[7]  Christos Tzamos,et al.  Mechanism design via optimal transport , 2013, EC '13.

[8]  Shuchi Chawla,et al.  Mechanism Design for Subadditive Agents via an Ex Ante Relaxation , 2016, EC.

[9]  Shuchi Chawla,et al.  The power of randomness in bayesian optimal mechanism design , 2010, EC '10.

[10]  S. Matthew Weinberg,et al.  On Optimal Multi-Dimensional Mechanism Design , 2011, Electron. Colloquium Comput. Complex..

[11]  Gagan Goel,et al.  Budget constrained auctions with heterogeneous items , 2009, STOC '10.

[12]  Christos Tzamos,et al.  Strong Duality for a Multiple-Good Monopolist , 2014, EC.

[13]  Pingzhong Tang,et al.  Optimal mechanisms with simple menus , 2014, EC.

[14]  M. Armstrong Multiproduct Nonlinear Pricing , 1996 .

[15]  S. Matthew Weinberg,et al.  Symmetries and optimal multi-dimensional mechanism design , 2012, EC '12.

[16]  Yang Cai,et al.  Reducing Revenue to Welfare Maximization: Approximation Algorithms and other Generalizations , 2013, SODA.

[17]  Maurício Soares Bugarin,et al.  On the optimality of exclusion in multi-dimensional screening , 2014 .

[18]  G. Pavlov,et al.  A Property of Solutions to Linear Monopoly Problems , 2011 .

[19]  G. Pavlov,et al.  Optimal Mechanism for Selling Two Goods , 2011 .

[20]  Yang Cai,et al.  Simple mechanisms for subadditive buyers via duality , 2016, STOC.

[21]  Ian A. Kash,et al.  Optimal Auctions with Restricted Allocations , 2016, EC.

[22]  J. Rochet A necessary and sufficient condition for rationalizability in a quasi-linear context , 1987 .

[23]  Yang Cai,et al.  Extreme-Value Theorems for Optimal Multidimensional Pricing , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[24]  Yang Cai,et al.  An algorithmic characterization of multi-dimensional mechanisms , 2011, STOC '12.

[25]  Yang Cai,et al.  Optimal Multi-dimensional Mechanism Design: Reducing Revenue to Welfare Maximization , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[26]  R. Rockafellar Extension of Fenchel’ duality theorem for convex functions , 1966 .

[27]  Elias Koutsoupias,et al.  Selling Two Goods Optimally , 2015, ICALP.

[28]  Nikhil R. Devanur,et al.  A duality based unified approach to Bayesian mechanism design , 2016, STOC.

[29]  Shuchi Chawla,et al.  Algorithmic pricing via virtual valuations , 2007, EC '07.

[30]  Rajesh Sundaresan,et al.  Optimal mechanisms for selling two items to a single buyer having uniformly distributed valuations , 2016 .

[31]  Y. Narahari,et al.  Optimal Mechanism for Selling Two Items to a Single Buyer Having Uniformly Distributed Valuations , 2016, WINE.

[32]  Omer Lev,et al.  A two-dimensional problem of revenue maximization , 2011 .

[33]  Andrew Chi-Chih Yao,et al.  An n-to-1 Bidder Reduction for Multi-item Auctions and its Applications , 2014, SODA.