Multi-Soliton Solutions and Their Interactions for the (2+1)-DIMENSIONAL Sawada-Kotera Model with Truncated PAINLEVÉ Expansion, Hirota Bilinear Method and Symbolic Computation

In this paper, the (2+1)-dimensional Sawada-Kotera equation is studied by the truncated Painleve expansion and Hirota bilinear method. Firstly, based on the truncation of the Painleve series we obtain two distinct transformations which can transform the (2+1)-dimensional Sawada-Kotera equation into two bilinear equations of different forms (which are shown to be equivalent). Then employing Hirota bilinear method, we derive the analytic one-, two- and three-soliton solutions for the bilinear equations via symbolic computation. A formula which denotes the N-soliton solution is given simultaneously. At last, the evolutions and interactions of the multi-soliton solutions are graphically discussed as well. It is worthy to be noted that the truncated Painleve expansion provides a useful dependent variable transformation which transforms a partial differential equation into its bilinear form and by means of the bilinear form, further study of the original partial differential equation can be conducted.

[1]  Yong Chen,et al.  A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2 + 1)-dimensional dispersive long wave equation , 2005, Appl. Math. Comput..

[2]  Nail Akhmediev,et al.  Dynamics and interaction of pulses in the modified Manakov model , 2006 .

[3]  Salah M. El-Sayed,et al.  Numerical soliton-like solutions of the potential Kadomtsev–Petviashvili equation by the decomposition method , 2003 .

[4]  W. Zakrzewski,et al.  Numerical Integration of (2 + 1) Dimensional PDEs forS2Valued Functions , 1998 .

[5]  Cheng Zhang,et al.  Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications , 2008 .

[6]  X. Geng,et al.  Quasi-periodic solutions of the 2+1 dimensional modified Korteweg–de Vries equation , 1999 .

[7]  C. Qu,et al.  On affine Sawada–Kotera equation , 2003 .

[8]  Boris Konopelchenko,et al.  Some new integrable nonlinear evolution equations in 2 + 1 dimensions , 1984 .

[9]  Micheline Musette,et al.  Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations , 1991 .

[10]  M. Tabor,et al.  Painlevé property and multicomponent isospectral deformation equations , 1983 .

[11]  Propagating wave patterns and ''peakons'' of the Davey-Stewartson system , 2006 .

[12]  Xing-Biao Hu,et al.  Soliton solutions and symmetries of the 2+1 dimensional Kaup–Kupershmidt equation , 1999 .

[13]  Long time behavior of solutions for a nonlinear evolution equation , 2005 .

[14]  Graded Symmetry Algebras of Time-Dependent Evolution Equations and Application to the Modified KP Equations , 1997, solv-int/9705015.

[15]  Hong-qing Zhang,et al.  Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation☆ , 2002 .

[16]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[17]  Ding-jiang Huang,et al.  Variable-coefficient projective Riccati equation method and its application to a new (2 + 1)-dimensional simplified generalized Broer–Kaup system , 2005 .

[18]  Bo Tian,et al.  New family of overturning soliton solutions for a typical breaking soliton equation , 1995 .

[19]  Robert Conte,et al.  Bäcklund transformation of partial differential equations from the Painlevé–Gambier classification. I. Kaup–Kupershmidt equation , 1998 .

[20]  Peter A. Clarkson,et al.  Nonclassical symmetry reductions for the Kadomtsev-Petviashvili equation , 1991 .

[21]  Dogan Kaya,et al.  An application of the ADM to seven-order Sawada-Kotara equations , 2004, Appl. Math. Comput..

[22]  B. Tian,et al.  Macropterons, micropterons and similarity reductions for the regularized Ostrovsky-Grimshaw model for fluids and plasmas with symbolic computation , 2006 .

[23]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[24]  Hongyou Wu,et al.  Time-space integrable decompositions of nonlinear evolution equations , 2006 .

[25]  K. Helfrich Nonlinear adjustment of a localized layer of buoyant, uniform potential vorticity fluid against a vertical wall , 2006 .

[26]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[27]  E. Butcher,et al.  On macromodeling of nonlinear systems with time periodic coefficients , 2006 .

[28]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[29]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[30]  P. Olver,et al.  The Connection between Partial Differential Equations Soluble by Inverse Scattering and Ordinary Differential Equations of Painlevé Type , 1983 .

[31]  Nasser-eddine Tatar,et al.  Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives , 2005 .

[32]  Wei Xu,et al.  New families of travelling wave solutions for Boussinesq–Burgers equation and (3+1)-dimensional Kadomtsev–Petviashvili equation , 2007 .

[33]  Geng Xian-Guo,et al.  C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy , 1990 .

[34]  P. G. Estévez,et al.  A wave equation in 2+1: Painleve analysis and solutions , 1995 .

[35]  Xianguo Geng,et al.  Quasi-periodic solutions for some 2+1-dimensional discrete models , 2003 .

[36]  P. Clarkson,et al.  Painleve analysis of the non-linear Schrodinger family of equations , 1987 .

[37]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[38]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[39]  De-sheng Li,et al.  New soliton-like solutions to the potential Kadomstev-Petviashvili (PKP) equation , 2003, Appl. Math. Comput..

[40]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation , 2006 .

[41]  B. Tian,et al.  Symbolic computation in engineering: Application to a breaking soliton equation , 1997 .

[42]  V. Dubrovsky,et al.  The construction of exact solutions of two-dimensional integrable generalizations of Kaup–Kuperschmidt and Sawada–Kotera equations via ∂̄-dressing method , 2002 .

[43]  Bin Chen,et al.  An auto-Bäcklund transformation and exact solutions of stochastic Wick-type Sawada-Kotera equations , 2005 .

[44]  Bo Tian,et al.  (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation , 2006 .

[45]  A. H. Khater,et al.  Travelling wave solutions of some classes of nonlinear evolution equations in (1 + 1) and (2 + 1) dimensions 1 , 2002 .

[46]  C. Rogers,et al.  Initial/boundary value problems and Darboux-Levi-type transformations associated with a 2 + 1-dimensional eigenfunction equation , 1995 .

[47]  Fernando Mellibovsky,et al.  On a solenoidal Fourier--Chebyshev spectral method for stability analysis of the Hagen--Poiseuille flow , 2007 .

[48]  David J. Kaup,et al.  A Bäcklund Transformation for a Higher Order Korteweg-De Vries Equation , 1977 .

[49]  R. Zait,et al.  Bäcklund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations , 2003 .

[50]  Masaki Kashiwara,et al.  KP Hierarchies of Orthogonal and Symplectic Type–Transformation Groups for Soliton Equations VI– , 1981 .

[51]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[52]  X. Geng,et al.  From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation , 1999 .

[53]  W. Ma The algebraic structures of isospectral Lax operators and applications to integrable equations , 1992 .

[54]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[55]  Manav Tyagi,et al.  The propagation of finite amplitude gasdynamic disturbances in a stratified atmosphere around a celestial body: An analytical study , 2005 .

[56]  B. Konopelchenko,et al.  (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems , 1991 .

[57]  A. Golovin,et al.  Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. , 2005, Journal of colloid and interface science.

[58]  Wenxiu Ma,et al.  Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation , 1995, solv-int/9511005.

[59]  B. Tian,et al.  Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas , 2007 .

[60]  Bo Tian,et al.  Symbolic Computation Study of a Generalized Variable-Coefficient Two-Dimensional Korteweg-de Vries Model with Various External-Force Terms from Shallow Water Waves, Plasma Physics, and Fluid Dynamics , 2009 .

[61]  Xianguo Geng,et al.  Relation between the Kadometsev–Petviashvili equation and the confocal involutive system , 1999 .

[62]  Bo Tian,et al.  Transformations for a generalized variable-coefficient Korteweg de Vries model from blood vessels, Bose Einstein condensates, rods and positons with symbolic computation , 2006 .

[63]  Y. Shang Explicit and exact solutions for a generalized long–short wave resonance equations with strong nonlinear term , 2005 .

[64]  Jingsong He,et al.  Partial differential equations possessing Frobenius integrable decompositions , 2007 .

[65]  Dromion solutions for dispersive long-wave equations in two space dimensions , 1997 .

[66]  J. Weiss,et al.  Modified equations, rational solutions, and the Painlevé property for the Kadomtsev–Petviashvili and Hirota–Satsuma equations , 1985 .

[67]  Hong-qing Zhang,et al.  Soliton-like and period form solutions for high dimensional nonlinear evolution equations , 2003 .

[68]  P. R. Gordoa,et al.  Darboux transformations via Painlevé analysis , 1997 .

[69]  Woo-Pyo Hong,et al.  Comment on: “Spherical Kadomtsev Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation” [Phys. Lett. A 340 (2005) 243] , 2007 .

[70]  P. G. Estévez A nonisospectral problem in (2+1) dimensions derived from KP , 2001 .

[71]  M. Lakshmanan,et al.  Dromion like structures in the (2+1)-dimensional breaking soliton equation , 1995 .

[72]  K. Nakkeeran,et al.  Painlevé test for the certain (2+1)-dimensional nonlinear evolution equations , 2005 .

[73]  A. H. Khater,et al.  Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces , 2006 .

[74]  Andrew Pickering,et al.  Factorization of the 'classical Boussinesq' system , 1994 .

[75]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation , 2007 .

[76]  Bo Tian,et al.  Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation , 2005 .

[77]  M. Senthilvelan,et al.  On the extended applications of Homogenous Balance Method , 2001, Appl. Math. Comput..

[78]  Faucher,et al.  Symmetry analysis of the Infeld-Rowlands equation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[79]  Kwok Wing Chow,et al.  Positon-like Solutions of Nonlinear Evolution Equations in (2+1) Dimensions , 1998 .

[80]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[81]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[82]  M. C. Nucci Painleve property and pseudopotentials for nonlinear evolution equations , 1989 .

[83]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[84]  Wen-Xiu Ma,et al.  Diversity of exact solutions to a restricted Boiti-Leon-Pempinelli dispersive long-wave system , 2003 .

[85]  A. Matzenmiller,et al.  Consistently linearized constitutive equations of micromechanical models for fibre composites with evolving damage , 2007 .

[86]  Yuri V. Vassilevski,et al.  Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations , 2006, J. Comput. Phys..

[87]  R. Hirota,et al.  Nonlinear Evolution Equations Generated from the Bäcklund Transformation for the Boussinesq Equation , 1977 .

[88]  Nonlinear travelling waves on a spiralling liquid jet , 2006 .

[89]  Q. Al‐Mdallal,et al.  Sine–Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation , 2007 .

[90]  M. A. Abdou,et al.  Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method , 2007 .

[91]  M. P. Paı¨doussis,et al.  On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow , 2007 .

[92]  S. Sawada,et al.  A Method for Finding N-Soliton Solutions of the KdV and KdV-Like Equation , 1974 .

[93]  N. V. Ustinov,et al.  Third order spectral problems: reductions and Darboux transformations , 1994 .

[94]  A. Bekir,et al.  Painlevé test for some (2 + 1)-dimensional nonlinear equations , 2007 .

[95]  S. Panizzi Low regularity global solutions for nonlinear evolution equations of Kirchhoff type , 2007 .

[96]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[97]  Abdul-Majid Wazwaz,et al.  The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations , 2007, Appl. Math. Comput..

[98]  J. Weiss,et al.  The sine‐Gordon equations: Complete and partial integrability , 1984 .