High‐Current‐Density Vertical‐Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures

Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures.

[1]  T. Ohmi,et al.  Growth of native oxide on a silicon surface , 1990 .

[2]  Jing Guo,et al.  Modeling of a vertical tunneling graphene heterojunction field-effect transistor , 2012, 1206.5077.

[3]  Eric M. Vogel,et al.  Tunneling characteristics in chemical vapor deposited graphene–hexagonal boron nitride–graphene junctions , 2014 .

[4]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[5]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[6]  Sefaattin Tongay,et al.  High efficiency graphene solar cells by chemical doping. , 2012, Nano letters.

[7]  T. Sudarshan,et al.  Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor. , 2014, Small.

[8]  Kangho Lee,et al.  Chemically Modulated Graphene Diodes , 2013, Nano letters.

[9]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[10]  Kinam Kim,et al.  Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier , 2012, Science.

[11]  Yuanyuan Shang,et al.  Colloidal antireflection coating improves graphene-silicon solar cells. , 2013, Nano letters.

[12]  X. Duan,et al.  Highly flexible electronics from scalable vertical thin film transistors. , 2014, Nano letters.

[13]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[14]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[15]  J. Kong,et al.  Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. , 2015, Nano letters.

[16]  Toshimasa Matsuoka,et al.  Direct tunneling N/sub 2/O gate oxynitrides for low-voltage operation of dual gate CMOSFETs , 1995, Proceedings of International Electron Devices Meeting.

[17]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[18]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[19]  X. Duan,et al.  High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact. , 2015, ACS nano.

[20]  K. Novoselov,et al.  Resonant tunnelling and negative differential conductance in graphene transistors , 2013, Nature Communications.

[21]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[22]  Hsuen‐Li Chen,et al.  Sunlight-activated graphene-heterostructure transparent cathodes: Enabling high-performance n-graphene/p-Si Schottky junction photovoltaics , 2015 .

[23]  Lei Han,et al.  High-Quality Thin SiO2 Films Grown by Atomic Layer Deposition Using Tris(dimethylamino)silane (TDMAS) and Ozone , 2013 .

[24]  T. Fromherz,et al.  CMOS-compatible graphene photodetector covering all optical communication bands , 2013, 1302.3854.

[25]  X. Duan,et al.  Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene , 2013, Nature Communications.

[26]  A Comparative Study of Tunneling FETs Based on Graphene and GNR Heterostructures , 2014, IEEE Transactions on Electron Devices.

[27]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[28]  Yi Jia,et al.  Graphene‐On‐Silicon Schottky Junction Solar Cells , 2010, Advanced materials.

[29]  Swastik Kar,et al.  Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. , 2013, Nano letters.

[30]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[31]  H. Ho,et al.  Local study of thickness-dependent electronic properties of ultrathin silicon oxide near SiO2/Si interface , 2007 .

[32]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[33]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[34]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[35]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[36]  F. Kang,et al.  Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer. , 2012, Physical chemistry chemical physics : PCCP.

[37]  Chenming Calvin Hu,et al.  Modern Semiconductor Devices for Integrated Circuits , 2009 .