Jacobi interpolation approximations and their applications to singular differential equations

Jacobi–Gauss-type interpolations are considered. Some approximation results in certain Hilbert spaces are established. They are used for numerical solutions of singular differential equations and other related problems. The numerical results are illustrated.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  Ernst P. Stephan,et al.  On the Convergence of the p-Version of the Boundary Element Galerkin Method. , 1989 .

[3]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[4]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[5]  Thanh Tran,et al.  Additive schwarz methods for the H-version boundary element method , 1996 .

[6]  Mohamed A. El-Gebeily,et al.  On a finite difference method for singular two-point boundary value problems , 1998 .

[7]  Dennis Jespersen,et al.  Ritz–Galerkin Methods for Singular Boundary Value Problems , 1978 .

[8]  D. Elliott A Galerkin-Petrov method for singular integral equations , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[9]  Kenneth Eriksson,et al.  Galerkin Methods for Singular Boundary Value Problems in One Space Dimension , 1984 .

[10]  F. Stenger Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .

[11]  Zur Theorie der Nherungsverfahren fr singulre Integralgleichungen auf Intervallen , 1981 .

[12]  P. Chambré On the Solution of the Poisson‐Boltzmann Equation with Application to the Theory of Thermal Explosions , 1952 .

[13]  L. Karpenko Approximate solution of a singular integral equation by means of jacobi polynomials , 1967 .

[14]  John P. Boyd Polynomial series versus sinc expansions for functions with corner or endpoint singularities , 1986 .

[15]  Steen Krenk,et al.  On quadrature formulas for singular integral equations of the first and the second kind , 1975 .

[16]  J. Szabados,et al.  A survey on mean convergence of interpolatory processes , 1992 .

[17]  J. Boyd The asymptotic Chebyshev coefficients for functions with logarithmic endpoint singularities: mappings and singular basis functions , 1989 .

[18]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[19]  Guo Ben-Yu,et al.  Gegenbauer Approximation and Its Applications to Differential Equations on the Whole Line , 1998 .

[20]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[21]  Guo Ben-Yu,et al.  Gegenbauer Approximation in Certain Hilbert Spaces and Its Applications to Singular Differential Equations , 1999 .

[22]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[23]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[24]  Ben-Yu Guo,et al.  Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations , 2000 .

[25]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[26]  Thanh Tran,et al.  Additive Schwarz algorithms for the p version of the Galerkin boundary element method , 2000, Numerische Mathematik.

[27]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[28]  M. Chawla,et al.  Modified gauss-jacobi quadrature formulas for the numerical evaluation of cauchy type singular integrals , 1974 .

[29]  Finite Element Methods of High-Order Accuracy for Singular Two-Point Boundary Value Problems with Nonsmooth Solutions , 1980 .

[30]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .