Modeling and optimal control of deteriorating production processes

Most systems in the real world are subject to deterioration. Modeling and optimal control of deteriorating production processes such as tool Wear and tool failure have been important research areas. When (1) the operating conditions of the deteriorating systems Vary (deterministicdly or stochastically), or (2) the deteriorating processes are non-homogeneous (characterized by increasing mean and increasing variance), or (3) if we want to incorporate the information representing the operating conditions of the deteriorating systems from condition monitoring such as vibration signals into the modei, the problem becomes

[1]  J. Tlusty,et al.  A Critical Review of Sensors for Unmanned Machining , 1983 .

[2]  Melvin J. Hinich,et al.  Monitoring Rotating Tool Wear Using Higher-Order Spectral Features , 1993 .

[3]  Gregory K. Miller,et al.  Elements of Applied Stochastic Processes , 1972 .

[4]  Christos Koulamas,et al.  The Total Tardiness Problem: Review and Extensions , 1994, Oper. Res..

[5]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[6]  Yung C. Shin,et al.  Surface Roughness Measurement by Ultrasonic Sensing for In-Process Monitoring , 1995 .

[7]  Kathryn E. Stecke,et al.  A synthesis of decision models for tool management in automated manufacturing , 1993 .

[8]  Viliam Makis,et al.  Optimal Replacement In The Proportional Hazards Model , 1992 .

[9]  Bengt Klefsjö,et al.  Proportional hazards model: a review , 1994 .

[10]  An Integral Equation Approach to , 1992 .

[11]  S. Ramalingam,et al.  Tool Life Distributions—Part 3: Mechanism of Single Injury Tool Failure and Tool Life Distribution in Interrupted Cutting , 1978 .

[12]  Sergio Rossetto,et al.  A Stochastic Tool-Life Model , 1981 .

[13]  E. M. Scheuer,et al.  Reliability of an m-out of-n system when component failure induces higher failure rates in survivors , 1988 .

[14]  J F Boisvieux,et al.  Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. , 1984, Drug metabolism reviews.

[15]  Patricia J. Solomon,et al.  Effect of misspecification of regression models in the analysis of survival data , 1984 .

[16]  A. Mallet A maximum likelihood estimation method for random coefficient regression models , 1986 .

[17]  N. Laird,et al.  Maximum likelihood computations with repeated measures: application of the EM algorithm , 1987 .

[18]  Chi-Hsien Joseph Lu,et al.  The use of degredation measures in assessing reliability , 1992 .

[19]  Andrew K. S. Jardine,et al.  Proportional hazards analysis of diesel engine failure data , 1989 .

[20]  J. E. Freund A Bivariate Extension of the Exponential Distribution , 1961 .

[21]  Hui Fan,et al.  Prediction of Service Life for Machines and Structures , 1990 .

[22]  Martin Newby,et al.  A critical look at some point process models for repairable systems , 1992 .

[23]  Richard A. Wysk,et al.  Optimal cutting tool replacement based on tool wear status , 1990 .

[24]  Paul K. Wright,et al.  On-Line Estimation of Tool/Chip Interface Temperatures for a Turning Operation , 1988 .

[25]  Angus Jeang,et al.  Optimal tool replacement with nondecreasing tool wear , 1992 .

[26]  C. Joseph Lu,et al.  Using Degradation Measures to Estimate a Time-to-Failure Distribution , 1993 .

[27]  I. Gertsbakh,et al.  Statistical Reliability Theory , 1988 .

[28]  Huamin Liu,et al.  Cutting-tool reliability assessment in variable machining conditions , 1996, IEEE Trans. Reliab..

[29]  Kai Yang,et al.  Statistical surface roughness checking procedure based on a cutting tool wear model , 1994 .

[30]  Viliam Makis Optimal tool replacement with asymmetric quadratic loss , 1996 .

[31]  Sergio Rossetto,et al.  Fracture and Wear as Factors Affecting Stochastic Tool-Life Models and Machining Economics , 1977 .

[32]  Kaung-Hwa Chen,et al.  A multivariant exponential shared-load model , 1993 .

[33]  Thomas A. Mazzuchi,et al.  Assessment of machine tool reliability using a proportional hazards model , 1989 .

[34]  A. H. Christer,et al.  A model of condition monitoring of a production plant , 1992 .

[35]  L. Lamberson,et al.  Modeling a shared-load k-out-of-n:G system , 1991 .

[36]  Richard M. Feldman,et al.  A survey of preventive maintenance models for stochastically deteriorating single-unit systems , 1989 .

[37]  S. M. Pandit Data Dependent Systems Approach to Stochastic Tool Life and Reliability , 1978 .

[38]  N. H. Cook,et al.  Tool Wear and Tool Life , 1973 .

[39]  K. Taraman,et al.  Multi machining output—multi independent variable turning research by response surface methodology , 1974 .

[40]  L. A. Kendall,et al.  A General Optimization Model for Multi-Tool Manufacturing Systems , 1991 .

[41]  E. V. Walker,et al.  Applying proportional hazards modelling in reliability , 1991 .

[42]  Michael J. LuValle,et al.  Experiment design and graphical analysis for checking acceleration models , 1993 .

[43]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[44]  Martin Newby Perspective on Weibull proportional-hazards models , 1994 .

[45]  S. Ramalingam,et al.  Tool-Life Distributions—Part 1: Single-Injury Tool-Life Model , 1977 .

[46]  G. O. Wesolowsky,et al.  Optimal Control of a Linear Trend Process with Quadratic Loss , 1989 .

[47]  J. G. Wager,et al.  Study of the Distribution of the Life of HSS Tools , 1971 .

[48]  M. R. Drury,et al.  Proportional hazards modelling in the analysis of computer systems reliability , 1988 .

[49]  A. E. Diniz,et al.  Correlating tool wear, tool life, surface roughness and tool vibration in finish turning with coated carbide tools , 1994 .

[50]  Fumio Hashimoto,et al.  Tool wear prediction and economics in machining stepped parts , 1988 .

[51]  Marvin Zelen,et al.  Mathematical Theory of Reliability , 1965 .

[52]  G. T. Smith,et al.  Application of Nonlinear Models with Random Coefficients to Growth Data , 1991 .

[53]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[54]  K. Subramanian,et al.  Sensing of Drill Wear and Prediction of Drill Life , 1977 .

[55]  S. Noto La Diega,et al.  Optimum tool replacement policies with penalty cost for unforeseen tool failure , 1983 .

[56]  S. M. Pandit,et al.  Reliability and Optimal Replacement via Coefficient of Variation , 1980 .

[57]  Giacomo Maria Galante,et al.  Tool replacement with adaptive control in a non-stationary non-periodic stochastic process , 1991 .

[58]  Y. Koren Flank Wear Model of Cutting Tools Using Control Theory , 1978 .

[59]  Kourosh Danai,et al.  Effect of flank wear on the topography of machined surfaces , 1993 .

[60]  M. Pike A method of analysis of a certain class of experiments in carcinogenesis. , 1966, Biometrics.

[61]  Ian Sherrington,et al.  Modern measurement techniques in surface metrology: part II; optical instruments , 1988 .

[62]  Martin Newby,et al.  Accelerated failure time models for reliability data analysis , 1988 .