Bootstrapped Learning of Emotion Hashtags #hashtags4you

We present a bootstrapping algorithm to automatically learn hashtags that convey emotion. Using the bootstrapping framework, we learn lists of emotion hashtags from unlabeled tweets. Our approach starts with a small number of seed hashtags for each emotion, which we use to automatically label tweets as initial training data. We then train emotion classifiers and use them to identify and score candidate emotion hashtags. We select the hashtags with the highest scores, use them to automatically harvest new tweets from Twitter, and repeat the bootstrapping process. We show that the learned hashtag lists help to improve emotion classification performance compared to an N-gram classifier, obtaining 8% microaverage and 9% macro-average improvements in F-measure.

[1]  Hsin-Hsi Chen,et al.  Emotion Classification Using Web Blog Corpora , 2007, IEEE/WIC/ACM International Conference on Web Intelligence (WI'07).

[2]  Xiaolong Wang,et al.  Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach , 2011, CIKM '11.

[3]  Eric Gilbert,et al.  Widespread Worry and the Stock Market , 2010, ICWSM.

[4]  Regina Barzilay,et al.  Event Discovery in Social Media Feeds , 2011, ACL.

[5]  Alan Ritter,et al.  Unsupervised Modeling of Twitter Conversations , 2010, NAACL.

[6]  Nicholas Diakopoulos,et al.  Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! Using Word Lengthening to Detect Sentiment in Microblogs , 2011, EMNLP.

[7]  Wouter Weerkamp,et al.  Microblog language identification: overcoming the limitations of short, unedited and idiomatic text , 2012, Language Resources and Evaluation.

[8]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[9]  Saif Mohammad,et al.  #Emotional Tweets , 2012, *SEMEVAL.

[10]  Amit P. Sheth,et al.  Harnessing Twitter "Big Data" for Automatic Emotion Identification , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[11]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[12]  Choochart Haruechaiyasak,et al.  Discovering Consumer Insight from Twitter via Sentiment Analysis , 2012, J. Univers. Comput. Sci..

[13]  Alice H. Oh,et al.  Do You Feel What I Feel? Social Aspects of Emotions in Twitter Conversations , 2012, ICWSM.

[14]  Mor Naaman,et al.  Unfolding the event landscape on twitter: classification and exploration of user categories , 2012, CSCW '12.

[15]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[16]  A. Kilgarriff *SEM 2012: The First Joint Conference on Lexical and Computational Semantics , 2012 .

[17]  Isabell M. Welpe,et al.  Election Forecasts With Twitter , 2011 .

[18]  Stuart Adam Battersby,et al.  Experimenting with Distant Supervision for Emotion Classification , 2012, EACL.

[19]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[20]  A. Smeaton,et al.  On Using Twitter to Monitor Political Sentiment and Predict Election Results , 2011 .

[21]  Alice H. Oh,et al.  "Discovering emotion influence patterns in online social network conversations" by Suin Kim, JinYeong Bak, and Alice Oh, with Ching-man Au Yeung as coordinator , 2012, SIGWEB Newsl..

[22]  Johanna D. Moore,et al.  Twitter Sentiment Analysis: The Good the Bad and the OMG! , 2011, ICWSM.

[23]  Brendan T. O'Connor,et al.  Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters , 2013, NAACL.

[24]  Hsin-Hsi Chen,et al.  Building Emotion Lexicon from Weblog Corpora , 2007, ACL.

[25]  Munmun De Choudhury,et al.  Happy, Nervous or Surprised? Classification of Human Affective States in Social Media , 2012, ICWSM.

[26]  Ari Rappoport,et al.  Semi-Supervised Recognition of Sarcasm in Twitter and Amazon , 2010, CoNLL.

[27]  Stan Matwin,et al.  Hierarchical Classification Approach to Emotion Recognition in Twitter , 2012, 2012 11th International Conference on Machine Learning and Applications.