FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING

The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency2). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ∼ 4 × 10−5 pc cm−3 for pulsars at ∼1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm−3 but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.

[1]  J. Cordes,et al.  PULSAR TIMING ERRORS FROM ASYNCHRONOUS MULTI-FREQUENCY SAMPLING OF DISPERSION MEASURE VARIATIONS , 2014, 1411.1764.

[2]  G. Desvignes,et al.  A 24 HR GLOBAL CAMPAIGN TO ASSESS PRECISION TIMING OF THE MILLISECOND PULSAR J1713+0747 , 2014, 1408.1694.

[3]  G. Desvignes,et al.  Measuring pulse times of arrival from broad-band pulsar observations , 2014, 1407.3827.

[4]  Y. Levin,et al.  Limitations in timing precision due to single-pulse shape variability in millisecond pulsars , 2014, 1406.4716.

[5]  K.J.Lee,et al.  Model-based asymptotically optimal dispersion measure correction for pulsar timing , 2014, 1404.2084.

[6]  I. Stairs,et al.  A COMPREHENSIVE STUDY OF RELATIVISTIC GRAVITY USING PSR B1534+12 , 2014, 1402.4836.

[7]  S. Ransom,et al.  ELEMENTARY WIDEBAND TIMING OF RADIO PULSARS , 2014, 1402.1672.

[8]  M. Keith,et al.  Dispersion measure variations in a sample of 168 pulsars , 2013, 1307.7221.

[9]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[10]  S. Burke-Spolaor,et al.  Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing , 2012, 1211.5887.

[11]  Chongqing,et al.  The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.

[12]  J. Cordes,et al.  PULSE INTENSITY MODULATION AND THE TIMING STABILITY OF MILLISECOND PULSARS: A CASE STUDY OF PSR J1713+0747 , 2012, 1210.7021.

[13]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[14]  J. Cordes,et al.  A Measurement Model for Precision Pulsar Timing , 2010, 1010.3785.

[15]  B. J. Rickett,et al.  SCATTERING OF PULSAR RADIO EMISSION BY THE INTERSTELLAR PLASMA , 2010, 1005.4914.

[16]  Adam Deller,et al.  100 μas RESOLUTION VLBI IMAGING OF ANISOTROPIC INTERSTELLAR SCATTERING TOWARD PULSAR B0834+06 , 2009, 0910.5654.

[17]  G. Hobbs,et al.  An Improved Solar Wind Electron Density Model for Pulsar Timing , 2007, 0709.0135.

[18]  India.,et al.  The effect of pulse profile evolution on pulsar dispersion measure , 2007, astro-ph/0702440.

[19]  R. N. Manchester,et al.  Tests of General Relativity from Timing the Double Pulsar , 2006, Science.

[20]  I. Cognard,et al.  Interstellar Plasma Weather Effects in Long-Term Multifrequency Timing of Pulsar B1937+21 , 2006, astro-ph/0601242.

[21]  J. Cordes,et al.  Multifrequency Observations of Radio Pulse Broadening and Constraints on Interstellar Electron Density Microstructure , 2004, astro-ph/0401067.

[22]  D. Stinebring,et al.  Five Years of Pulsar Flux Density Monitoring: Refractive Scintillation and the Interstellar Medium , 2000 .

[23]  B. Rickett,et al.  Interstellar Scintillation of Pulsar B0809+74 , 1999, astro-ph/9911368.

[24]  Denver,et al.  Simultaneous Dual-Frequency Observations of Giant Pulses from the Crab Pulsar , 1999, astro-ph/9902386.

[25]  J. Cordes,et al.  Diffractive Interstellar Scintillation Timescales and Velocities , 1998 .

[26]  B. Rickett,et al.  On the Theory of Pulse Propagation and Two-Frequency Field Statistics in Irregular Interstellar Plasmas , 1998 .

[27]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[28]  V. Kaspi,et al.  High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .

[29]  D. C. Backer,et al.  Temporal variations of pulsar dispersion measures , 1993 .

[30]  A. Fey,et al.  608 MHz VLBI observations of the compact double radio source 2050+364 : constraints on interstellar scattering , 1993 .

[31]  A. Wolszczan,et al.  Time Variability of Pulsar Dispersion Measures , 1991 .

[32]  D. Stinebring,et al.  Refractive interstellar scintillation and millisecond pulsar timing , 1991 .

[33]  J. Cordes,et al.  Interstellar propagation effects and the precision of pulsar timing , 1990 .

[34]  D. Backer,et al.  Constructing a Pulsar Timing Array , 1990 .

[35]  B. J. Rickett,et al.  Radio propagation through the turbulent interstellar plasma. , 1990 .

[36]  D. Stinebring,et al.  Timing and scintillations of the millisecond pulsar 1937 + 214 , 1990 .

[37]  M. Reid,et al.  Limits on refractive interstellar scattering toward sagittarius B2 , 1988 .

[38]  J. Codona,et al.  Refractive Scintillation in the Interstellar Medium , 1987 .

[39]  J. Cordes,et al.  Refractive and diffractive scattering in the interstellar medium , 1986 .

[40]  R. Blandford,et al.  Refractive effects in pulsar scintillation , 1986 .

[41]  M. E. Costa,et al.  Changing parameters along the path to the VELA pulsar. , 1985 .

[42]  R. Isaacman,et al.  The Crab Nebula pulsar - Variability of dispersion and scattering , 1977 .

[43]  W. M. Cronyn The analysis of radio scattering and space-probe observations of small-scale structure in the interplanetary medium , 1970 .

[44]  J. Comella,et al.  Frequency Dependent Pulse Widths for CP 1133 , 1968, Nature.