Coating Life Prediction for Combustion Turbine Blades

A life prediction method for combustion turbine blade coatings has been developed by modeling coating degradation mechanisms including oxidation, spallation, and aluminum loss due to inward diffusion. Using this model, the influence of cycle time on coating life is predicted for GTD-11 1 coated with an MCrAlY, PtAl, or aluminide coating. The results are used to construct a coating life diagram that depicts failure and safe regions for the coating in a log-log plot of number of startup cycles versus cycle time. The regime where failure by oxidation, spallation, and inward diffusion dominates is identified and delineated from that dominated by oxidation and inward diffusion only. A procedure for predicting the remaining life of a coating is developed. The utility of the coating life diagram for predicting the failure and useful life of MCrAlY, aluminide, or PtAl coatings on the GTD-11 substrate is illustrated and compared against experimental data.