Suppression of secondary droplet for high-definition drop-on-demand inkjet by actively regulating the channel acoustic waves

[1]  Xinlei Wu,et al.  Mechanisms of inkjet printing in a liquid environment , 2022, Journal of Fluid Mechanics.

[2]  Y. Hasegawa,et al.  Multi-objective optimization of actuation waveform for high-precision drop-on-demand inkjet printing , 2022, Physics of Fluids.

[3]  Haitao Xu,et al.  Experimental study on the motion of a spherical particle in a plane traveling sound wave , 2022, Acta Mechanica Sinica.

[4]  Xinlei Wu,et al.  Subharmonic resonance and antiresonance characteristics for high-frequency confined interface vibration inkjet printing , 2022, Physics of Fluids.

[5]  Xiaohu Zhou,et al.  Advances in Single-Cell Printing , 2022, Micromachines.

[6]  D. Lohse Fundamental Fluid Dynamics Challenges in Inkjet Printing , 2021 .

[7]  Xiaodong Chen,et al.  Flow-pattern-altered syntheses of core–shell and hole–shell microparticles in an axisymmetric microfluidic device , 2021, Acta Mechanica Sinica.

[8]  A. Abate,et al.  High‐Definition Single‐Cell Printing: Cell‐by‐Cell Fabrication of Biological Structures , 2020, Advanced materials.

[9]  Bo Yeon Lee,et al.  Actuating Voltage Waveform Optimization of Piezoelectric Inkjet Printhead for Suppression of Residual Vibrations , 2020, Micromachines.

[10]  Yantao Yang,et al.  Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing , 2020, Acta Mechanica Sinica.

[11]  H. Fang,et al.  Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system , 2018, Journal of Fluid Mechanics.

[12]  G. Wittstock,et al.  Inkjet Printing in Liquid Environments. , 2018, Small.

[13]  Nan Li,et al.  Inkjet Printing Based Droplet Generation for Integrated Online Digital Polymerase Chain Reaction. , 2018, Analytical chemistry.

[14]  Longquan Chen,et al.  Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. , 2017, Journal of colloid and interface science.

[15]  Ibrahim T. Ozbolat,et al.  A comprehensive review on droplet-based bioprinting: Past, present and future. , 2016, Biomaterials.

[16]  Yanzhen Zhang,et al.  Hydrodynamic dispensing and electrical manipulation of attolitre droplets , 2016, Nature Communications.

[17]  B. Khoo,et al.  Spark-generated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation , 2013 .

[18]  Kyung Hyun Choi,et al.  Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process , 2012 .

[19]  B. Derby Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution , 2010 .

[20]  H. Wijshoff,et al.  The dynamics of the piezo inkjet printhead operation , 2010 .

[21]  D. Quéré Wetting and Roughness , 2008 .

[22]  E. Villermaux,et al.  Physics of liquid jets , 2008 .

[23]  J. Eggers Drop formation – an overview , 2005 .

[24]  Frank E. Talke,et al.  Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices , 1984 .

[25]  David Quéré Leidenfrost Dynamics , 2016 .

[26]  D. Lohse,et al.  Ultrafast imaging method to measure surface tension and viscosity of inkjet-printed droplets in flight , 2016 .

[27]  Alvin U. Chen,et al.  A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production , 2002 .