Cu2ZnGeS4 as a novel hole transport material for carbon-based perovskite solar cells with power conversion efficiency above 18%

[1]  Zhen Liu,et al.  Cu2SnS3 Nanocrystal-Based Hole-Transport Layer for Carbon Electrode-Based Perovskite Solar Cells , 2022, ACS Applied Nano Materials.

[2]  Zhike Liu,et al.  Stable 24.29%‐Efficiency FA0.85MA0.15PbI3 Perovskite Solar Cells Enabled by Methyl Haloacetate‐Lead Dimer Complex , 2022, Advanced Energy Materials.

[3]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[4]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[5]  Yue Hu,et al.  Minimizing the Voltage Loss in Hole‐Conductor‐Free Printable Mesoscopic Perovskite Solar Cells , 2021, Advanced Energy Materials.

[6]  Yanhong Luo,et al.  High-efficiency (>20%) planar carbon-based perovskite solar cells through device configuration engineering. , 2021, Journal of colloid and interface science.

[7]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[8]  S. Mallick,et al.  Enhanced charge transport in low temperature carbon-based n-i-p perovskite solar cells with NiOx-CNT hole transport material , 2021 .

[9]  Zhike Liu,et al.  A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23% , 2021, Nano-micro letters.

[10]  Y. Mao,et al.  Alloyed (Cu2SnS3)x(ZnS)1−x quantum dots as a hole-transporting layer for efficient and stable perovskite solar cells , 2021, Solar Energy.

[11]  N. Cheng,et al.  Scalable one-step heating up synthesis of Cu2ZnSnS4 nanocrystals hole conducting materials for carbon electrode based perovskite solar cells , 2021 .

[12]  S. Mahdavi,et al.  Evaluating Cu2SnS3 Nanoparticle Layers as Hole-Transporting Materials in Perovskite Solar Cells , 2021, ACS Applied Energy Materials.

[13]  Y. Zhan,et al.  Polyvinylcarbazole as an Efficient Interfacial Modifier for Low‐Cost Perovskite Solar Cells with CuInS 2 /Carbon Hole‐Collecting Electrode , 2021 .

[14]  Jing Wang,et al.  Vacuum-Assisted Drying Process for Screen-Printable Carbon Electrodes of Perovskite Solar Cells with Enhanced Performance Based on Cuprous Thiocyanate as a Hole Transporting Layer. , 2021, ACS applied materials & interfaces.

[15]  Yue Hu,et al.  Tailoring the Dimensionality of Hybrid Perovskites in Mesoporous Carbon Electrodes for Type‐II Band Alignment and Enhanced Performance of Printable Hole‐Conductor‐Free Perovskite Solar Cells , 2021, Advanced Energy Materials.

[16]  H. Pettersson,et al.  Low-temperature carbon-based electrodes in perovskite solar cells , 2020, Energy & Environmental Science.

[17]  Y. Zhan,et al.  Effect of indium ratio in CuInxGa1-xS2/carbon hole collecting electrode for perovskite solar cells , 2020 .

[18]  Zhigang Zang,et al.  Optoelectronic Modulation of Undoped NiOx Films for Inverted Perovskite Solar Cells via Intrinsic Defect Regulation , 2020 .

[19]  Z. Liu,et al.  Ligand modification of Cu2ZnSnS4 nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71% , 2020 .

[20]  N. Cheng,et al.  Cu2ZnSnS4 as an efficient hole transporting material for low temperature paintable carbon electrode based perovskite solar cells , 2020 .

[21]  Q. Tang,et al.  Hole Boosted Cu(Cr,M)O2 Nanocrystals for All-Inorganic CsPbBr3 Perovskite Solar Cells. , 2019, Angewandte Chemie.

[22]  Yuena Meng,et al.  Se-Assisted Performance Enhancement of Cu2ZnSn(S,Se)4 Quantum-Dot Sensitized Solar Cells via a Simple Yet Versatile Synthesis. , 2019, Inorganic chemistry.

[23]  Shuji Nakanishi,et al.  Photocathode Characteristics of a Spray-Deposited Cu2ZnGeS4 Thin Film for CO2 Reduction in a CO2-Saturated Aqueous Solution , 2019, ACS Applied Energy Materials.

[24]  T. Shi,et al.  17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer , 2019, Applied Surface Science.

[25]  Zhanhua Wei,et al.  Efficient and stable carbon-based perovskite solar cells enabled by the inorganic interface of CuSCN and carbon nanotubes , 2019, Journal of Materials Chemistry A.

[26]  X. Zhang,et al.  Promoting the Hole Extraction with Co 3 O 4 Nanomaterials for Efficient Carbon‐Based CsPbI 2 Br Perovskite Solar Cells , 2019, Solar RRL.

[27]  Xingzhong Zhao,et al.  Hydrophobic Cu2O Quantum Dots Enabled by Surfactant Modification as Top Hole‐Transport Materials for Efficient Perovskite Solar Cells , 2019, Advanced science.

[28]  Yi-bing Cheng,et al.  Self‐Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar Cells , 2018, Advanced Functional Materials.

[29]  Xavier Mathew,et al.  Cu2ZnGeS4 thin films deposited by thermal evaporation: the impact of Ge concentration on physical properties , 2018 .

[30]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.

[31]  Haitao Liu,et al.  L-cystine-assisted synthesis of Cu2ZnGeS4 nanocrystal powder via solvothermal process , 2016 .

[32]  N. Duffy,et al.  Cu2ZnGeS4 Nanocrystals from Air-Stable Precursors for Sintered Thin Film Alloys , 2014 .

[33]  JunHo Kim,et al.  Study of structural and optical properties of kesterite Cu2ZnGeX4 (X = S, Se) thin films synthesized by chemical spray pyrolysis , 2013 .

[34]  Liang Shi,et al.  Phosphate-free synthesis, optical absorption and photoelectric properties of Cu2ZnGeS4 and Cu2ZnGeSe4 uniform nanocrystals. , 2013, Dalton transactions.

[35]  Liang Shi,et al.  Synthesis and photoelectric properties of Cu2ZnGeS4 and Cu2ZnGeSe4 single-crystalline nanowire arrays. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[36]  Vahid Akhavan,et al.  Synthesis of Cu(2)ZnSnS(4) nanocrystals for use in low-cost photovoltaics. , 2009, Journal of the American Chemical Society.