Endometrial ISG17 mRNA and a related mRNA are induced by interferon-tau and localized to glandular epithelial and stromal cells from pregnant cows

[1]  Thomas E. Curry,et al.  Molecular Endocrinology , 2009, Methods in Molecular Biology.

[2]  S. Mandel,et al.  Collection of blood in heparinized tubes does not alter the molecular distribution or forms of IGFBP-3 and IGF , 1996, Endocrine.

[3]  T. R. Hansen,et al.  Complex induction of bovine uterine proteins by interferon-tau. , 1998, Biology of reproduction.

[4]  T. R. Hansen,et al.  Pregnancy and interferon-tau induce conjugation of bovine ubiquitin cross-reactive protein to cytosolic uterine proteins. , 1998, Biology of reproduction.

[5]  A. Haas,et al.  Pathways of ubiquitin conjugation , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  L. Hicke Ubiquitin‐dependent internalization and down‐regulation of plasma membrane proteins , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  T. R. Hansen,et al.  Transient ubiquitin cross-reactive protein gene expression in the bovine endometrium. , 1997, Endocrinology.

[8]  S. Ramanujam,et al.  In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. , 1996, Journal of immunology.

[9]  K. A. Austin,et al.  Polyubiquitin up-regulation in corpora lutea of prostaglandin-treated ewes. , 1996, Endocrinology.

[10]  Tom Maniatis,et al.  Regulation of Interferon-γ-Activated STAT1 by the Ubiquitin-Proteasome Pathway , 1996, Science.

[11]  K. Redman,et al.  The cDNA for the ubiquitin-52-amino-acid fusion protein from rat encodes a previously unidentified 60 S ribosomal subunit protein. , 1996, The Biochemical journal.

[12]  D. Moore,et al.  Ubiquitin cross-reactive protein is released by the bovine uterus in response to interferon during early pregnancy. , 1996, Biology of reproduction.

[13]  A. Haas,et al.  Immunoregulatory properties of ISG15, an interferon-induced cytokine. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Haas,et al.  Conjugation of the 15-kDa Interferon-induced Ubiquitin Homolog Is Distinct from That of Ubiquitin (*) , 1996, The Journal of Biological Chemistry.

[15]  J. Lowe,et al.  Immunohistochemical localization of ubiquitin cross‐reactive protein in human tissues , 1995, The Journal of pathology.

[16]  D. Moore,et al.  Secretion of bovine uterine proteins in response to type I interferons. , 1995, Biology of reproduction.

[17]  K. Loeb,et al.  Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern. , 1994, Molecular and cellular biology.

[18]  Tom Maniatis,et al.  The ubiquitinproteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB , 1994, Cell.

[19]  A. Varshavsky,et al.  Ubiquitin‐assisted dissection of protein transport across membranes. , 1994, The EMBO journal.

[20]  R. Roberts,et al.  Interferons as hormones of pregnancy. , 1992, Endocrine reviews.

[21]  K. Loeb,et al.  The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. , 1992, The Journal of biological chemistry.

[22]  A. Ciechanover,et al.  The ubiquitin system for protein degradation. , 1992, Annual review of biochemistry.

[23]  E. Borden,et al.  A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma. , 1991, Journal of immunology.

[24]  S. Jentsch,et al.  Genetic analysis of the ubiquitin system. , 1991, Biochimica et biophysica acta.

[25]  E. Knight,et al.  IFN-induced 15-kDa protein is released from human lymphocytes and monocytes. , 1991, Journal of immunology.

[26]  R. Baker,et al.  The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. , 1991, Nucleic acids research.

[27]  R. Baker,et al.  Unequal crossover generates variation in ubiquitin coding unit number at the human UbC polyubiquitin locus. , 1989, American journal of human genetics.

[28]  Alexander Varshavsky,et al.  The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis , 1989, Nature.

[29]  N. Reich,et al.  A 15-kDa interferon-induced protein is derived by COOH-terminal processing of a 17-kDa precursor. , 1988, The Journal of biological chemistry.

[30]  J. Darnell,et al.  Interferon-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Haas,et al.  The dynamics of ubiquitin pools within cultured human lung fibroblasts. , 1987, The Journal of biological chemistry.

[32]  B. Korant,et al.  Molecular characterization of the interferon-induced 15-kDa protein. Molecular cloning and nucleotide and amino acid sequence. , 1986, The Journal of biological chemistry.

[33]  U. Bond,et al.  Ubiquitin is a heat shock protein in chicken embryo fibroblasts , 1985, Molecular and cellular biology.

[34]  A. Ciechanover,et al.  Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85 , 1984, Cell.

[35]  K. Wilkinson,et al.  Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly. , 1981, The Journal of biological chemistry.

[36]  P. Lengyel,et al.  Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells , 1979, Nature.