Demonstration of measurement-only blind quantum computing

Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

[1]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[2]  R. Prevedel,et al.  High-speed linear optics quantum computing using active feed-forward , 2007, Nature.

[3]  T. Morimae Verification for measurement-only blind quantum computing , 2012, 1208.1495.

[4]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[5]  S. Barz,et al.  Practical and efficient experimental characterization of multiqubit stabilizer states , 2015, 1502.06549.

[6]  Tomoyuki Morimae,et al.  Efficient universal blind quantum computation. , 2013, Physical review letters.

[7]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[8]  G. Vallone,et al.  One-Way Quantum Computation with Two-Photon Multiqubit Cluster States , 2008, 0807.3887.

[9]  Qin Li,et al.  Triple-server blind quantum computation using entanglement swapping , 2014 .

[10]  E. Kashefi,et al.  Experimental verification of quantum computation , 2013, Nature Physics.

[11]  Masato Koashi,et al.  Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. , 2008, Physical review letters.

[12]  Joseph Fitzsimons,et al.  Optimal Blind Quantum Computation , 2013, Physical review letters.

[13]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[14]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[15]  Tomoyuki Morimae Continuous-variable blind quantum computation. , 2012, Physical review letters.

[16]  Tomoyuki Morimae Measurement-based quantum computation cannot avoid byproducts , 2012 .

[17]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[18]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[19]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[20]  T. Morimae,et al.  Blind quantum computation protocol in which Alice only makes measurements , 2012, 1201.3966.

[21]  Kai Chen,et al.  Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. , 2007, Physical review letters.

[22]  H. Eisenberg,et al.  Entanglement swapping between photons that have never coexisted. , 2012, Physical review letters.

[23]  J. Rarity,et al.  Experimental characterization of universal one-way quantum computing , 2013, 1305.0212.

[24]  T. Morimae,et al.  Ancilla-Driven Universal Blind Quantum Computation , 2012, 1210.7450.

[25]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[26]  Nicolas Gisin,et al.  Quantum Random Number Generation on a Mobile Phone , 2014, 1405.0435.

[27]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[28]  Keisuke Fujii,et al.  Blind topological measurement-based quantum computation , 2011, Nature Communications.

[29]  G. Tóth,et al.  Entanglement detection in the stabilizer formalism , 2005, quant-ph/0501020.

[30]  Elham Kashefi,et al.  Blind quantum computing with weak coherent pulses. , 2011, Physical review letters.

[31]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.