Tip-enhanced near-field optical microscopy.

Spectroscopic methods with high spatial resolution are essential for understanding the physical and chemical properties of nanoscale materials, including quantum structures and biological surfaces. An optical technique is reviewed that relies on the enhanced electric fields in the proximity of a sharp, laser-irradiated metal tip. These fields are utilized for spatially confined probing of various optical signals, thus allowing for a detailed sample characterization far below the diffraction limit. In addition, tip-enhanced fields also provide the sensitivity crucial for the detection of nanoscale volumes. After outlining the principles of near-field optics, the mechanisms contributing to local field enhancement and how it can be used to enhance optical signals are discussed. Different experimental methods are presented and several recent examples of Raman and fluorescence microscopy with 10 nm spatial resolution of single molecules are reviewed.

[1]  O. Muskens,et al.  Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. , 2007, Nano letters.

[2]  Dai Zhang,et al.  Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). , 2007, Journal of the American Chemical Society.

[3]  Katrin F. Domke,et al.  Enhanced Raman spectroscopy: Single molecules or carbon? , 2007 .

[4]  Lukas Novotny,et al.  Chapter 5 The history of near-field optics , 2007 .

[5]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[6]  L. Novotný,et al.  Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement , 2002 .

[7]  S. Kawata,et al.  Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy , 2003 .

[8]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[9]  Markus B. Raschke,et al.  Plasmonic light scattering from nanoscopic metal tips , 2005 .

[10]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[11]  F. J. García de abajo,et al.  Nanoscopic ultrafast space-time-resolved spectroscopy. , 2005, Physical review letters.

[12]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[13]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[14]  M. Raschke,et al.  Reply to ``Comment on `Scanning-probe Raman spectroscopy with single-molecule sensitivity' '' , 2007 .

[15]  T. R. Hart,et al.  Temperature Dependence of Raman Scattering in Silicon , 1970 .

[16]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[17]  L. Eng,et al.  Two particle enhanced nano Raman microscopy and spectroscopy. , 2007, Nano letters.

[18]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[19]  Lukas Novotny,et al.  Exciton energy transfer in pairs of single-walled carbon nanotubes. , 2008, Nano letters.

[20]  Christian Hafner,et al.  Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. , 2007, Nano letters.

[21]  R C Dunn,et al.  Near-field scanning optical microscopy. , 1999, Chemical reviews.

[22]  P. Tchénio,et al.  Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips , 2000 .

[23]  T. Klar,et al.  Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. , 2008, Physical review letters.

[24]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[25]  Satoshi Kawata,et al.  Near-field Raman scattering enhanced by a metallized tip , 2001 .

[26]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .

[27]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[28]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[29]  Gordana Dukovic,et al.  Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. , 2004, Physical review letters.

[30]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[31]  M. V. D. van de Corput,et al.  Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level. , 2007, Nano letters.

[32]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[33]  S. Kawata,et al.  Depolarization effect in reflection-mode tip-enhanced Raman scattering for Raman active crystals , 2008 .

[34]  L. Novotný,et al.  Subsurface Raman imaging with nanoscale resolution. , 2006, Nano letters.

[35]  K. Higashitani,et al.  Single-nanoparticle-terminated tips for scanning probe microscopy. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[36]  Michael Bauer,et al.  Adaptive subwavelength control of nano-optical fields , 2007, Nature.

[37]  James M Tour,et al.  Simultaneous measurements of electronic conduction and Raman response in molecular junctions. , 2008, Nano letters.

[38]  Reinhard Guckenberger,et al.  Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons. , 2007, Optics express.

[39]  John T. Krug,et al.  Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation , 2002 .

[40]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[41]  Jean-Jacques Greffet,et al.  Single-molecule spontaneous emission close to absorbing nanostructures , 2004 .

[42]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[43]  Lukas Novotny,et al.  Nanoplasmonic enhancement of single-molecule fluorescence , 2007 .

[44]  D W Pohl,et al.  Optics at the nanometre scale , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Mark C. Hersam,et al.  Pump-Probe Spectroscopy of Exciton Dynamics in (6,5) Carbon Nanotubes , 2007 .

[46]  S. Kawata,et al.  Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. , 2006, The Journal of chemical physics.

[47]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[48]  V. Sandoghdar,et al.  A single gold particle as a probe for apertureless scanning near‐field optical microscopy , 2001, Journal of microscopy.

[49]  Katrin F. Domke,et al.  Direct monitoring of plasmon resonances in a tip-surface gap of varying width , 2007 .

[50]  Lukas Novotny,et al.  Facts and artifacts in near-field optical microscopy , 1997 .

[51]  Ziyang Ma,et al.  Fluorescence near-field microscopy of DNA at sub-10 nm resolution. , 2006, Physical review letters.

[52]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[53]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[54]  Lukas Novotny,et al.  Nanoscale optical imaging of excitons in single-walled carbon nanotubes. , 2005, Nano letters.

[55]  Lukas Novotny,et al.  Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids. , 2008, Nano letters.

[56]  Stavola,et al.  Electron-hole pair excitation in semiconductors via energy transfer from an external sensitizer. , 1985, Physical review. B, Condensed matter.

[57]  E. Betzig,et al.  Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit , 1992, Science.

[58]  V. Sandoghdar,et al.  Modification of single molecule fluorescence by a scanning probe , 2006 .

[59]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[60]  Hongxiang Liu,et al.  QUANTIFICATION OF PRION GENE EXPRESSION IN BRAIN AND PERIPHERAL ORGANS OF GOLDEN HAMSTER BY REAL-TIME RT-PCR , 2005, Animal biotechnology.

[61]  Lukas Novotny,et al.  Near-field optical imaging using metal tips illuminated by higher-order Hermite–Gaussian beams , 1998 .

[62]  D. Anselmetti,et al.  Optimized apertureless optical near-field probes with 15 nm optical resolution , 2006 .

[63]  Thomas Nann,et al.  Fluorescence-emission control of single CdSe nanocrystals using gold-modified AFM tips. , 2007, Small.

[64]  M. Hecker,et al.  Raman intensity enhancement in silicon-on-insulator substrates by laser deflection at atomic force microscopy tips and particles , 2007 .

[65]  Christoph Lienau,et al.  Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. , 2005, Physical review letters.

[66]  John E. Wessel,et al.  Surface-enhanced optical microscopy , 1985 .

[67]  C. L. Jahncke,et al.  Electric field gradient effects in raman spectroscopy. , 2000, Physical review letters.

[68]  A. Zayats,et al.  Near-field second-harmonic generation , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[69]  I. Notingher,et al.  Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. , 2005, The journal of physical chemistry. B.

[70]  Dai Zhang,et al.  Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). , 2006, Journal of the American Chemical Society.

[71]  Gerd Leuchs,et al.  Focusing light to a tighter spot , 2000 .

[72]  Ferenc Krausz,et al.  Attosecond Nanoplasmonic Field Microscope , 2007 .

[73]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[74]  Ronald R. Chance,et al.  Lifetime of an emitting molecule near a partially reflecting surface , 1974 .

[75]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[76]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[77]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[78]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[79]  A. Meixner,et al.  A high numerical aperture parabolic mirror as imaging device for confocal microscopy. , 2001, Optics express.

[80]  B. Pettinger,et al.  High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum. , 2007, The Review of scientific instruments.

[81]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[82]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[83]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[84]  Jürgen Popp,et al.  On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[85]  S. Kawata,et al.  Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. , 2006, Nano letters.

[86]  A. Zayats,et al.  Apertureless scanning near-field second-harmonic microscopy , 2000 .

[87]  B. Hecht,et al.  Absorption and fluorescence of single molecules. , 2006, The Journal of chemical physics.

[88]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[89]  H. Gersen,et al.  Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes , 2000 .

[90]  Volker Deckert,et al.  Spitzenverstärkte Raman-Spektroskopie an RNA-Einzelsträngen: Vorschlag für eine direkte Sequenzierungsmethode , 2008 .

[91]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[92]  Dominique Barchiesi,et al.  Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods. , 2005, Optics express.

[93]  Weihua Zhang,et al.  Near-Field Heating, Annealing, and Signal Loss in Tip-Enhanced Raman Spectroscopy , 2008 .

[94]  Hendrik F. Hamann,et al.  Strength of the electric field in apertureless near-field optical microscopy , 2001 .

[95]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[96]  C. Sukenik,et al.  Controlled fabrication of silver or gold nanoparticle near-field optical atomic force probes: Enhancement of second-harmonic generation , 2002 .

[97]  Vladimir M. Shalaev,et al.  Enhanced localized fluorescence in plasmonic nanoantennae , 2008 .

[98]  M. Dresselhaus,et al.  Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes. , 2000, Physical review letters.

[99]  Olivier J. F. Martin,et al.  Molecular quenching and relaxation in a plasmonic tunable system , 2008 .

[100]  S. Kawata,et al.  Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced Raman microscopy , 2007 .

[101]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[102]  Renato Zenobi,et al.  Tip-Enhanced Raman Spectroscopy Can See More: The Case of Cytochrome c , 2008 .

[103]  S. Bozhevolnyi Topographical artifacts and optical resolution in near-field optical microscopy , 1997 .

[104]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[105]  Marcus Sackrow,et al.  Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[106]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[107]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[108]  M. Anderson,et al.  Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes. , 2003, Journal of structural biology.

[109]  S. Kawata,et al.  Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule , 2004 .

[110]  R. V. Van Duyne,et al.  A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. , 2007, Journal of the American Chemical Society.

[111]  Lukas Novotny,et al.  Near-field optical microscopy and spectroscopy with pointed probes. , 2006, Annual review of physical chemistry.

[112]  V Sandoghdar,et al.  Optical microscopy via spectral modifications of a nanoantenna. , 2005, Physical review letters.

[113]  Gary A. Baker,et al.  Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis , 2005, Analytical and bioanalytical chemistry.

[114]  Zhuang Liu,et al.  Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. , 2008, Nano letters.

[115]  Lukas Novotny,et al.  Field Computations of Optical Antennas , 2007 .

[116]  L. Novotný,et al.  Near‐field imaging and spectroscopy of electronic states in single‐walled carbon nanotubes , 2006 .

[117]  Alexandre Bouhelier,et al.  Field‐enhanced scanning near‐field optical microscopy , 2006, Microscopy research and technique.

[118]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[119]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[120]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[121]  Lukas Novotny,et al.  Tip-enhanced optical spectroscopy , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[122]  K. Karrai,et al.  Piezoelectric tip‐sample distance control for near field optical microscopes , 1995 .

[123]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[124]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[125]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[126]  R. Zenobi,et al.  Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips , 2007, Analytical and bioanalytical chemistry.

[127]  Satoshi Kawata,et al.  Focused Excitation of Surface Plasmon Polaritons Based on Gap-Mode in Tip-Enhanced Spectroscopy , 2007 .

[128]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[129]  R. Zenobi,et al.  Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips , 2007 .

[130]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[131]  T. Klar,et al.  Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. , 2005, Nano letters.

[132]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[133]  Lukas Novotny,et al.  Nanoscale vibrational analysis of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[134]  B. Hecht,et al.  Optical near-field enhancement at a metal tip probed by a single fluorophore , 2002 .

[135]  E. Molinari,et al.  Dark-state luminescence of macroatoms at the near field. , 2005, Physical review letters.

[136]  A. Bouhelier,et al.  Plasmon‐coupled tip‐enhanced near‐field optical microscopy , 2003, Journal of microscopy.

[137]  F. Festy,et al.  Tip-enhanced fluorescence imaging of quantum dots , 2005 .

[138]  Dieter W. Pohl,et al.  Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy , 2007 .

[139]  Ehrenfried Zschech,et al.  Effects of laser-induced heating on Raman stress measurements of silicon and silicon-germanium structures , 2007 .

[140]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[141]  Quang Nguyen,et al.  Simple model for the polarization effects in tip-enhanced Raman spectroscopy , 2007 .

[142]  F. Keilmann,et al.  Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe , 2002 .

[143]  Stephan J. Sigrist,et al.  Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release , 2006, Science.

[144]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[145]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .