The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

In the updated APOGEE-Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with ΔαML,YREC ∼ 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H] = −0.5).

[1]  M. Bershady,et al.  SDSS-IV MaNGA : spatially resolved star formation histories in galaxies as a function of galaxy mass and type , 2016, 1612.01546.

[2]  H. R. Coelho,et al.  Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II. Radii, Masses, and Ages , 2016, 1611.08776.

[3]  C. Prieto,et al.  NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. I. NEUTRAL SILICON , 2016, 1610.05888.

[4]  C. Barache,et al.  Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes , 2016, 1609.04303.

[5]  J. Ferguson,et al.  THE EFFECTS OF INDIVIDUAL METAL CONTENTS ON ISOCHRONES FOR C, N, O, Na, Mg, Al, Si, AND Fe , 2016, 1608.05078.

[6]  C. Prieto,et al.  CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE , 2016, 1607.06102.

[7]  S. Basu,et al.  Significantly improving stellar mass and radius estimates: a new reference function for the Δν scaling relation , 2016, 1606.01917.

[8]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Inhibited extra mixing in two giants of the open cluster Trumpler 20? , 2016, 1605.01945.

[9]  Y. Elsworth,et al.  An accurate and self-consistent chemical abundance catalogue for the APOGEE/Kepler sample , 2016, 1604.08800.

[10]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[11]  Joss Bland-Hawthorn,et al.  STELLAR POPULATION SYNTHESIS BASED MODELING OF THE MILKY WAY USING ASTEROSEISMOLOGY OF 13,000 KEPLER RED GIANTS , 2016, 1603.05661.

[12]  B. Sato,et al.  Fundamental stellar parameters and age-metallicity relation of Kepler red giants in comparison with theoretical evolutionary tracks , 2016, 1601.06886.

[13]  E. Friel,et al.  PROPERTIES OF THE OLD OPEN CLUSTER CZERNIK 30 , 2015 .

[14]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[15]  K. Kinemuchi,et al.  WIDE FIELD NEAR-INFRARED PHOTOMETRY OF 12 GALACTIC GLOBULAR CLUSTERS: OBSERVATIONS VERSUS MODELS ON THE RED GIANT BRANCH , 2015, 1509.01470.

[16]  Y. Ita,et al.  Oscillatory convective modes in red giants: a possible explanation of the long secondary periods , 2015, 1507.03430.

[17]  F. Grupp,et al.  Calibrating the α parameter of convective efficiency using observed stellar properties , 2015, 1504.01636.

[18]  F. Castelli,et al.  NEW H-BAND STELLAR SPECTRAL LIBRARIES FOR THE SDSS-III/APOGEE SURVEY , 2015, 1502.05237.

[19]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[20]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[21]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[22]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[23]  T. Beers,et al.  THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS , 2014, 1410.2503.

[24]  J. Christensen-Dalsgaard,et al.  Improvements to stellar structure models, based on a grid of 3D convection simulations. II. Calibrating the mixing-length formulation , 2014, 1410.1559.

[25]  R. Handberg,et al.  Automated preparation of Kepler time series of planet hosts for asteroseismic analysis , 2014, 1409.1366.

[26]  Lars Koesterke,et al.  THE APOGEE RED-CLUMP CATALOG: PRECISE DISTANCES, VELOCITIES, AND HIGH-RESOLUTION ELEMENTAL ABUNDANCES OVER A LARGE AREA OF THE MILKY WAY'S DISK , 2014, 1405.1032.

[27]  J. Lattanzio,et al.  The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars , 2014, Publications of the Astronomical Society of Australia.

[28]  T. Beers,et al.  TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER , 2014, 1403.1872.

[29]  M. Asplund,et al.  The Stagger-grid: A grid of 3D stellar atmosphere models - III. The relation to mixing length convection theory , 2014, 1403.1062.

[30]  M. P. Di Mauro,et al.  PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC MODELING PORTAL , 2014, 1402.3614.

[31]  J. Lattanzio,et al.  Super and massive AGB stars - II. Nucleosynthesis and yields - Z = 0.02, 0.008 and 0.004 , 2013, 1310.2614.

[32]  G. Lewis,et al.  ARGOS - III. Stellar populations in the Galactic bulge of the Milky Way , 2012, 1212.1540.

[33]  L. Casagrande,et al.  Unveiling systematic biases in the 1D LTE excitation-ionization balance of Fe for FGK stars: a novel approach to determination of stellar parameters , 2012, 1210.7998.

[34]  J. De Ridder,et al.  FUNDAMENTAL PROPERTIES OF STARS USING ASTEROSEISMOLOGY FROM KEPLER AND CoRoT AND INTERFEROMETRY FROM THE CHARA ARRAY , 2012, 1210.0012.

[35]  D. A. García-Hernández,et al.  Short‐lived radioactivity in the early solar system: The Super‐AGB star hypothesis , 2012, 1208.5816.

[36]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[37]  T. Bedding,et al.  CALIBRATING CONVECTIVE PROPERTIES OF SOLAR-LIKE STARS IN THE KEPLER FIELD OF VIEW , 2012, 1207.2765.

[38]  E. Mamajek ON THE AGE AND BINARITY OF FOMALHAUT , 2012, 1206.6353.

[39]  P. Gaulme,et al.  ASTEROSEISMIC DIAGRAMS FROM A SURVEY OF SOLAR-LIKE OSCILLATIONS WITH KEPLER , 2011, 1110.1375.

[40]  M. Pinsonneault,et al.  THE SENSITIVITY OF CONVECTION ZONE DEPTH TO STELLAR ABUNDANCES: AN ABSOLUTE STELLAR ABUNDANCE SCALE FROM ASTEROSEISMOLOGY , 2011, 1108.2273.

[41]  L. Casagrande,et al.  FIDUCIAL STELLAR POPULATION SEQUENCES FOR THE VJKS PHOTOMETRIC SYSTEM , 2010, 1010.0247.

[42]  A. B. Balantekin,et al.  Solar fusion cross sections II: the pp chain and CNO cycles , 2010, 1004.2318.

[43]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[44]  P. Quirion,et al.  The Octave (Birmingham-Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars , 2009, 0911.2612.

[45]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[46]  P. Bonifacio,et al.  A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.

[47]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[48]  A. Weiss,et al.  GARSTEC—the Garching Stellar Evolution Code , 2008 .

[49]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[50]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[51]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[52]  J. Meléndez,et al.  The Effective Temperature Scale of FGK Stars. II. Teff:Color:[Fe/H] Calibrations , 2005, astro-ph/0503110.

[53]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[54]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[55]  R. Cyburt Primordial nucleosynthesis for the new cosmology: Determining uncertainties and examining concordance , 2004, astro-ph/0401091.

[56]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[57]  Don A. VandenBerg,et al.  Empirically Constrained Color-Temperature Relations. I. BV(RI)C , 2003 .

[58]  Forrest J. Rogers,et al.  Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology , 2002 .

[59]  B. Freytag,et al.  Stellar Envelope Convection Calibrated by Radiation Hydrodynamics Simulations: Influence on Globular Cluster Isochrones , 1999, astro-ph/9901074.

[60]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[61]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[62]  Oscar Straniero,et al.  The alpha -enhanced Isochrones and Their Impact on the FITS to the Galactic Globular Cluster System , 1993 .

[63]  M. Pinsonneault,et al.  Evolutionary models of the rotating sun , 1989 .

[64]  M. S. Cooper,et al.  Screening factors for nuclear reactions. I. General theory , 1973 .

[65]  H. E. DeWitt,et al.  Screening Factors for Nuclear Reactions. 11. Intermediate Screen-Ing and Astrophysical Applications , 1973 .

[66]  Edwin E. Salpeter,et al.  Electron Screening and Thermonuclear Reactions , 1954 .

[67]  D. Latham,et al.  ROTATIONAL AND RADIAL VELOCITIES FOR A SAMPLE OF 761 HIPPARCOS GIANTS AND THE ROLE OF BINARITY , 2007 .

[68]  Forrest J. Rogers,et al.  Opal equation-of-state tables for astrophysical applications , 1996 .